Complex-scaling method for the complex plasmonic resonances of particles with corners

Singular Days, Nice

3rd November 2022

Anne-Sophie Bonnet-Ben Dhia¹, Christophe Hazard¹, <u>Florian</u> <u>Monteghetti¹</u>

¹POEMS (CNRS-INRIA-ENSTA Paris), Palaiseau, France Contact: florian.monteghetti@ensta-paris.fr, f.monteghetti@gmail.com

Introduction	Complex plasmonic resonances	Complex scaling	Numerical results	Conclusion 0
Contents				

Introduction

- Motivation
- Complex resonances
- Basics of corner plasmonics
- Objectives and outline
- 2 Definition of complex plasmonic resonances
- 3 Applicability of corner complex scaling
- 4 Numerical results using corner perturbations

5 Conclusion

Motivation: Light concentration using "surface plasmons".

Computational challenges	
Interface geometry	 Nonlinear materials

Motivation: Light concentration using "surface plasmons".

Computational challenges	
Interface geometry	 Nonlinear materials

Objective: Evidence of complex resonances associated with a sign-changing corner.

In scattering, complex resonances model energy leaking at infinity.

$$i\partial_t\psi(t, \boldsymbol{x}) = H\psi(t, \boldsymbol{x}) + f(\boldsymbol{x}), \ \psi(0, \boldsymbol{x}) = 0 \quad (\boldsymbol{x} \in \mathbb{R}^3).$$

The wave function is formally given by

$$\psi(t,\boldsymbol{x}) = \frac{1}{2\pi} \int_{\Gamma} R(\omega) f(\boldsymbol{x}) e^{-i\omega t} \mathsf{d}\omega \quad (t>0)\,,$$

where the outgoing resolvent is $R(\omega) = (H - \omega I)^{-1}$ for $\Im(\omega) > 0$.

In scattering, complex resonances model energy leaking at infinity.

$$i\partial_t\psi(t, \boldsymbol{x}) = H\psi(t, \boldsymbol{x}) + f(\boldsymbol{x}), \ \psi(0, \boldsymbol{x}) = 0 \quad (\boldsymbol{x} \in \mathbb{R}^3).$$

The wave function is formally given by

$$\psi(t, \boldsymbol{x}) = \frac{1}{2\pi} \int_{\Gamma} R(\omega) f(\boldsymbol{x}) e^{-i\omega t} \mathsf{d}\omega \quad (t > 0) \,,$$

where the outgoing resolvent is $R(\omega) = (H - \omega I)^{-1}$ for $\Im(\omega) > 0$.

 \Rightarrow This work investigates a **plasmonic analogue** of scattering resonances.

 \triangle Spectral parameter is contrast κ .

 \triangle Spectral parameter is contrast κ .

Point spectrum in H^1_{loc} : $\kappa_n < 0$, $\kappa_n \rightarrow -1$ (Grieser 2014, Thm. 1).

 $\theta = \frac{\phi}{2}$

 x_c :

div
$$\left[\varepsilon_r(\kappa)^{-1}\nabla u\right] = 0$$
 (*).

Countable family of solutions:

$$u_{\eta}(r, \theta) = r^{i\eta} \times \Phi_{\eta}(\theta) \quad (\eta \in \mathbb{H}(\kappa, \phi)),$$

where $\Phi_{\eta} \in H^1_{\text{per}}(-\pi,\pi)$.

There is a critical interval I_c such that

$$\kappa \in I_c \iff \exists \eta_{\mathsf{bh}} \in \mathbb{R} : u_{\eta_{\mathsf{bh}}} \text{ solves } (\star).$$

 $\triangle u_{\eta_{bh}} \in L^2_{loc} \setminus H^1_{loc}$ is a strongly-oscillating "black-hole" wave.

Objective: Numerical evidence of complex resonances for a piecewise-smooth negative particle.

Οι	utline
2	Definition of complex plasmonic resonances What are they?
3	Applicability of corner complex scaling How to compute them?
4	Numerical results using corner perturbations Does this actually work?

Introduction	Complex plasmonic resonances	Complex scaling	Numerical results	Conclusion
0000	0000	00	000000	
Contents				

2 Definition of complex plasmonic resonances

- Definition
- Sketch of construction
- Characterization

3 Applicability of corner complex scaling

$\begin{array}{c|c} \begin{array}{c} \begin{array}{c} \mbox{Introduction} & \mbox{Complex plasmonic resonances} & \mbox{Complex scaling} & \mbox{Numerical results} & \mbox{Conclusion} & \mbox{ococo} & \mbox{o} & \mbox{ococo} & \mbox{o} & \mbox{$

 ${\rm Men} \ \Im(\kappa)>0, \ R(\kappa): \ H^{-1}(\Omega) \to H^1_0(\Omega) \ {\rm is \ bounded}.$

 $M \text{ When } \kappa \to I_c^{\mathfrak{o}} \cup I_c^{\mathfrak{e}}, \ \|R(\kappa)f\|_{H^1(\Omega)} \to \infty$ (Bonnet-Ben Dhia et al. 2013).

 ${\rm Men} \ \Im(\kappa)>0, \ R(\kappa): \ H^{-1}(\Omega) \to H^1_0(\Omega) \ {\rm is \ bounded}. \label{eq:model}$

 $M \text{ When } \kappa \to I_c^{\circ} \cup I_c^{\circ}, \ \|R(\kappa)f\|_{H^1(\Omega)} \to \infty$ (Bonnet-Ben Dhia et al. 2013).

$\begin{array}{c|c} \begin{array}{c} \begin{array}{c} \mbox{Complex plasmonic resonances} & \mbox{Complex scaling} & \mbox{Numerical results} & \mbox{Conclusion} \\ \hline \mbox{Observed} \end{array} \end{array} \\ \hline \begin{array}{c} \mbox{Definition of complex plasmonic resonances} \end{array} \\ \hline \mbox{Let } \Omega_m \Subset \Omega \Subset \mathbb{R}^2, \ \partial \Omega_m \ \mbox{smooth except for one corner.} \end{array} \\ \hline \begin{array}{c} \mbox{Operators:} & \mbox{} \mathcal{A}(\kappa)u \coloneqq \mbox{div} \left[\varepsilon_r(\kappa)^{-1} \nabla u \right] \end{array} \end{array} \end{array}$

 x_{c}

 \mathcal{O} When $\Im(\kappa) > 0$, $R(\kappa) : H^{-1}(\Omega) \to H^1_0(\Omega)$ is bounded.

 $R(\kappa)f \coloneqq \mathcal{A}(\kappa)^{-1}f$

 \triangle When $\kappa \to I_c^{o} \cup I_c^{e}$, $\|R(\kappa)f\|_{H^1(\Omega)} \to \infty$ (Bonnet-Ben Dhia et al. 2013).

$\begin{array}{c|c} \mbox{Introduction} & \mbox{Complex plasmonic resonances} & \mbox{Complex scaling} & \mbox{Numerical results} & \mbox{Conclusion} & \mbox{occ} & \mbox{o$

 ${\rm Men} \ \Im(\kappa)>0, \ R(\kappa): \ H^{-1}(\Omega) \to H^1_0(\Omega) \ {\rm is \ bounded}. \label{eq:model}$

 $\underline{\wedge} \quad \text{When } \kappa \to I_c^{\,\mathfrak{o}} \cup I_c^{\,\mathfrak{e}}, \ \|R(\kappa)f\|_{H^1(\Omega)} \to \infty \quad \text{(Bonnet-Ben Dhia et al. 2013)}.$

Definition. A complex plasmonic (CP) resonance is a pole of $\kappa \to R^{|\mathfrak{e}|}(\kappa)$ or $\kappa \to R^{|\mathfrak{o}|}(\kappa)$ in \mathbb{C}^- .

$\begin{array}{c|c} \begin{array}{c} \begin{array}{c} \mbox{Complex plasmonic resonances} & \mbox{Complex scaling} & \mbox{Numerical results} & \mbox{Conclusion} \\ \hline \mbox{Observed} \end{array} \end{array} \\ \hline \begin{array}{c} \mbox{Definition of complex plasmonic resonances} \end{array} \\ \hline \mbox{Let } \Omega_m \Subset \Omega \Subset \mathbb{R}^2, \ \partial \Omega_m \ \mbox{smooth except for one corner.} \end{array} \\ \hline \begin{array}{c} \mbox{Operators:} & \mbox{} \mathcal{A}(\kappa)u \coloneqq \mbox{div} \left[\varepsilon_r(\kappa)^{-1} \nabla u \right] \end{array} \end{array} \end{array}$

 x_{c}

 \mathcal{O} When $\Im(\kappa) > 0$, $R(\kappa) : H^{-1}(\Omega) \to H^1_0(\Omega)$ is bounded.

 $R(\kappa)f \coloneqq \mathcal{A}(\kappa)^{-1}f$

 $M \text{ When } \kappa \to I_c^{ \mathfrak{o}} \cup I_c^{ \mathfrak{e}}, \ \|R(\kappa)f\|_{H^1(\Omega)} \to \infty$ (Bonnet-Ben Dhia et al. 2013).

Definition. A complex plasmonic (CP) resonance is a pole of $\kappa \to R^{|\mathfrak{e}|}(\kappa)$ or $\kappa \to R^{|\mathfrak{o}|}(\kappa)$ in \mathbb{C}^- .

Next: characterization of resonance functions as $x o x_c$.

Local problem for $\kappa \in \mathbb{C}^+$:

div
$$\left[\varepsilon_r(\kappa)^{-1}\nabla u\right] = 0$$
 $(\boldsymbol{x} \in D)$.

Expansion: If $u \in H^1(D)$ then $\forall \eta_{\star} < 0$,

$$u =_{r \to 0} c_0 + \sum_{\substack{\eta \in \widehat{\mathbb{H}}_{\phi}(\kappa) \\ \Im(\eta) > \eta_{\star}}} c_{\eta} r^{i\eta} \Phi_{\eta}(\theta) + \mathcal{O}\left(r^{-\eta_{\star}}\right)$$

with $\Phi_{\eta} \in H^1_{\text{per}}(-\pi,\pi)$ and

$$\widehat{\mathbb{H}}_{\phi}(\kappa) \coloneqq \{\eta \,|\, f_{\phi}(\eta, \kappa) = 0, \ \Im(\eta) < 0\}.$$

 $\varepsilon_r = \kappa$ Ф $\widehat{\mathbb{H}}_{\phi}(\kappa)$ 4 $\mathbf{2}$ $\Im\left(\eta\right)$ 0 -2-4 $-1 \ -0.5$ 0 0.5 $\Re(\eta)$

Strategy: Characterize resonance functions by studying the continuation to \mathbb{C}^- of the map

$$C^+ \ni \kappa \mapsto \widehat{\mathbb{H}}_{\phi}(\kappa).$$
 6/17

Characterization. $\kappa \in \mathbb{C}^-$ is a resonance $\Leftrightarrow \exists u \notin H^1_{\mathsf{loc}}(\Omega)$:

div
$$\left[\varepsilon_r(\kappa)^{-1}\nabla u\right](\boldsymbol{x}) = 0 \quad (\boldsymbol{x} \neq \boldsymbol{x_c}), \ u_{\mid\partial\Omega} = 0,$$

 $u(r,\theta) \underset{r\to0}{\sim} c_1 r^{i\eta_{\mathrm{bh}}} \Phi(\theta) + c_0,$

where $\eta_{bh} = \eta_{bh}(\kappa)$ and $\Im(\eta_{bh}) > 0$.

Next: applicability of corner complex scaling

Introduction	Complex plasmonic resonances	Complex scaling	Numerical results	Conclusion
0000	0000	00	000000	
Contents				

Introduction

- 2 Definition of complex plasmonic resonances
- Applicability of corner complex scaling
 Corner complex scaling
- 4 Numerical results using corner perturbations

5 Conclusion

Introduction Complex plasmonic resonances Complex scaling Complex scaling: formulation

Principle. Let $\alpha \in \mathbb{C}$. Define a non self-adjoint "PEP α " such that: κ complex resonance of PEP $\iff \kappa$ eigenvalue of PEP α .

Intuitively, we would like

$$\begin{array}{ll} (\mathsf{PEP}) & u_{\mathsf{res}} \underset{r \to 0}{\sim} e^{i\eta \ln r} \Phi_{\eta}(\theta) + c_{0} & (\Im(\eta) > 0) \\ & \downarrow \\ (\mathsf{PEP}\alpha) & u_{\mathsf{res},\alpha} \underset{r \to 0}{\sim} e^{i\frac{\eta}{\alpha} \ln r} \Phi_{\eta}(\theta) + c_{0} & \left(\Im\left(\frac{\eta}{\alpha}\right) < 0\right) \end{array}$$

Principle. Let $\alpha \in \mathbb{C}$. Define a non self-adjoint "PEP α " such that: κ complex resonance of PEP $\iff \kappa$ eigenvalue of PEP α .

Intuitively, we would like

Next: Domain of validity?

Definition of PEP α . Substitution $r\partial_r \rightarrow \alpha r\partial_r$ around the corner. (Bonnet-Ben Dhia, Carvalho, Chesnel, and Ciarlet 2016)

Proposition. Let κ be an eigenvalue of $\mathsf{PEP}\alpha$ with $\alpha \in \mathbb{C} \setminus \mathbb{R}$. Then,

Definition of PEP α . Substitution $r\partial_r \rightarrow \alpha r\partial_r$ around the corner. (Bonnet-Ben Dhia, Carvalho, Chesnel, and Ciarlet 2016)

Proposition. Let κ be an eigenvalue of $\mathsf{PEP}\alpha$ with $\alpha \in \mathbb{C} \setminus \mathbb{R}$. Then,

 $\kappa \in U^{\alpha}_{\phi} \Rightarrow \kappa$ is a complex resonance.

Definition of PEP α . Substitution $r\partial_r \rightarrow \alpha r\partial_r$ around the corner. (Bonnet-Ben Dhia, Carvalho, Chesnel, and Ciarlet 2016)

Proposition. Let κ be an eigenvalue of PEP α with $\alpha \in \mathbb{C} \setminus \mathbb{R}$. Then, $\kappa \in U^{\alpha}_{\phi} \Rightarrow \kappa$ is a complex resonance.

Introduction	Complex plasmonic resonances	Complex scaling	Numerical results	Conclusion
0000	0000	00	000000	
Contents				

1 Introduction

2 Definition of complex plasmonic resonances

3 Applicability of corner complex scaling

4 Numerical results using corner perturbations

- Strategy
- Weak formulation and mesh
- Results

Weak Formulation: Find $(u, \kappa) \in H^1_0(\Omega) \times \mathbb{C}$ s.t.

$$\forall v \in H_0^1(\Omega), \ \int_{\Omega_m} \nabla u(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = -\kappa \ \int_{\Omega_d} \nabla u(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$$

Discretization:

$$A_{\Omega_m}U = -\kappa \, A_{\Omega_d}U,$$

where A_{Ω_m} , A_{Ω_d} are real symmetric and positive (but not definite).

Next: addition of a complex scaling region around x_c .

$$V = \left\{ (u, \breve{u}) \in H_e \times H_c \ \left| \ u_{|\Gamma_{\rm per}^1} = \breve{u}_{|\Gamma_{\rm per}^2} \right. \right\}.$$

Discretization with H^1 -conforming elements (isoparametric P^2/Q^2). Find $(\kappa, U) \in \mathbb{C} \times \mathbb{C}^N$:

$$\left[A_{\Omega_m \setminus D}^{(x,y)} + \frac{\alpha}{\alpha} A_{S_m}^{(z)} + \frac{1}{\alpha} A_{S_m}^{(\theta)}\right] U = -\kappa \left[A_{\Omega_d \setminus D}^{(x,y)} + \frac{\alpha}{\alpha} A_{S_d}^{(z)} + \frac{1}{\alpha} A_{S_d}^{(\theta)}\right] U,$$

where all matrices are real.

14 / 17

Fig. Eigenfunctions $\Re(u_{\alpha})/||u_{\alpha}||_{\infty}$ of PEP- α with $\alpha = e^{i\frac{\pi}{6}}$. (Top row) $\kappa = \kappa_2 \simeq 0.8086 - 0.02445i$, complex plasmonic resonance, (Bottom row) $\kappa \simeq 0.70313 - 8.0357 \cdot 10^{-8}i \simeq \kappa_3^{\circ}$, embedded eigenvalue.

16/17

Introduction	Complex plasmonic resonances	Complex scaling	Numerical results	Conclusion
Contents				

1 Introduction

- 2 Definition of complex plasmonic resonances
- 3 Applicability of corner complex scaling
- 4 Numerical results using corner perturbations

5 Conclusion

Conclusion and outlook

Agreement with (Li and Shipman 2019)

Outlook

- Interest of working with $\alpha(\kappa)$. (Nannen and Wess 2018)
- Properties and application of QNSP expansions. (Truong et al. 2020)
- ► Extension to e.g. Ω_m ⊂ ℝ³, Maxwell. (Helsing and Perfekt 2018) (Li, Perfekt, and Shipman 2020) (Bonnet-Ben Dhia, Chesnel, and Rihani 2022)

Agreement with (Li and Shipman 2019)

Outlook

- Interest of working with $\alpha(\kappa)$. (Nannen and Wess 2018)
- Properties and application of QNSP expansions. (Truong et al. 2020)

Extension to e.g. $\Omega_m \subset \mathbb{R}^3$, Maxwell. (Helsing and Perfekt 2018) (Li, Perfekt, and Shipman 2020) (Bonnet-Ben Dhia, Chesnel, and Rihani 2022)

Thanks for your attention.

Outline 0	Plasmonic eigenvalue problem	Complex scaling 0	Numerical validation	Numerical results	References
Refer	ences l			1. A.	

- Bonnet-Ben Dhia, A.-S., C. Carvalho, L. Chesnel, and P. Ciarlet (2016). "On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients". In: *Journal of Computational Physics* 322, pp. 224–247. DOI: 10.1016/j.jcp.2016.06.037 (cit. on pp. 26–30, 48, 49).
- Bonnet-Ben Dhia, A.-S., C. Carvalho, and P. Ciarlet (2018). "Mesh requirements for the finite element approximation of problems with sign-changing coefficients". In: *Numerische Mathematik* 138.4, pp. 801–838. DOI: 10.1007/s00211-017-0923-5 (cit. on pp. 36, 71–73).

Bonnet-Ben Dhia, A.-S., L. Chesnel, and X. Claeys (2013). "Radiation condition for a non-smooth interface between a dielectric and a metamaterial". In: *Mathematical Models and Methods in Applied Sciences* 23.09, pp. 1629–1662. DOI: 10.1142/S0218202513500188 (cit. on pp. 7–10, 13–17).

Bonnet-Ben Dhia, A.-S., L. Chesnel, and M. Rihani (May 2022). "Maxwell's equations with hypersingularities at a conical plasmonic tip". In: *J. Math. Pures Appl.* 161, pp. 70–110. DOI: 10.1016/j.matpur.2022.03.001 (cit. on pp. 48, 49).

Outline	Plasmonic eigenvalue problem	Complex scaling	Numerical validation	Numerical results	References
			0000000		
Refer	rences II				

- Dauge, M. and B. Texier (1997). "Problèmes de transmission non coercifs dans des polygones". hal-00562329 (cit. on pp. 18, 19).
- Grieser, D. (2014). "The plasmonic eigenvalue problem". In: Reviews in Mathematical Physics 26.03, p. 1450005. DOI: 10.1142/S0129055X14500056 (cit. on p. 8).
- Helsing, J., H. Kang, and M. Lim (2017). "Classification of spectra of the Neumann–Poincaré operator on planar domains with corners by resonance". In: Annales de l'Institut Henri Poincare (C) Non Linear Analysis 34.4, pp. 991–1011. DOI: 10.1016/j.anihpc.2016.07.004 (cit. on pp. 32, 53).
- Helsing, J. and A. Karlsson (2018). "On a Helmholtz transmission problem in planar domains with corners". In: *Journal of Computational Physics* 371, pp. 315–332. DOI: 10.1016/j.jcp.2018.05.044 (cit. on p. 53).

Helsing, J. and K.-M. Perfekt (2018). "The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points". In: *Journal de Mathématiques Pures et Appliquées* 118, pp. 235–287. DOI: 10.1016/j.matpur.2017.10.012 (cit. on pp. 48, 49).

Outline 0	Plasmonic eigenvalue problem	Complex scaling 0	Numerical validation	Numerical results	References
Refer	ences III				

- Kang, H. and J. Seo (2000). "Recent progress in the inverse conductivity problem with single measurement". In: *Inverse problems and related topics*. Ed. by G. Nakamura, J. Seo, and M. Yamamoto. Boca Raton: Chapman & Hall/CRC, pp. 69–80. ISBN: 1-58488-191-7 (cit. on p. 53).
- Lalanne, P., W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin (May 2018). "Light Interaction with Photonic and Plasmonic Resonances". In: *Laser Photonics Rev.* 12.5, p. 1700113. DOI: 10.1002/lpor.201700113 (cit. on pp. 3, 4).

- Li, W., K.-M. Perfekt, and S. P. Shipman (2020). *Infinitely many embedded eigenvalues for the Neumann-Poincaré operator in 3D*. arXiv: 2009.04371 [math.FA] (cit. on pp. 48, 49).
- Li, W. and S. P. Shipman (2019). "Embedded eigenvalues for the Neumann-Poincaré operator". In: *Journal of Integral Equations and Applications* 31.4, pp. 505–534. DOI: 10.1216/JIE-2019-31-4-505 (cit. on pp. 32, 48, 49, 53).

Outline 0	Plasmonic eigenvalue problem 000000	Complex scaling 0	Numerical validation	Numerical results	References
Refe	rences IV				

- Mayergoyz, I. D., D. R. Fredkin, and Z. Zhang (Oct. 2005). "Electrostatic (plasmon) resonances in nanoparticles". In: *Physical Review B* 72 (15), p. 155412. DOI: 10.1103/PhysRevB.72.155412 (cit. on p. 53).
- Nannen, L. and M. Wess (June 2018). "Computing scattering resonances using perfectly matched layers with frequency dependent scaling functions". In: *BIT Numerical Mathematics* 58.2, pp. 373–395. DOI: 10.1007/s10543-018-0694-0 (cit. on pp. 48, 49).
- - NanoWorld (Mar. 2022). Arrow[™] NCPt NanoWorld[®]. [Online; accessed 20. Mar. 2022] (cit. on pp. 3, 4).
- Ouyang, F. and M. Isaacson (1989). "Surface plasmon excitation of objects with arbitrary shape and dielectric constant". In: *Philosophical Magazine B* 60.4, pp. 481–492. DOI: 10.1080/13642818908205921 (cit. on p. 53).
- Perfekt, K.-M. (2021). "Plasmonic eigenvalue problem for corners: Limiting absorption principle and absolute continuity in the essential spectrum". In: *Journal de Mathématiques Pures et Appliquées* 145, pp. 130–162. DOI: https://doi.org/10.1016/j.matpur.2020.07.001 (cit. on p. 53).

Outline 0	Plasmonic eigenvalue problem 000000	Complex scaling 0	Numerical validation	Numerical results	References
Refer	rences V			and the second second	

Perfekt, K.-M. and M. Putinar (Feb. 2017). "The Essential Spectrum of the Neumann–Poincaré Operator on a Domain with Corners". In: Archive for Rational Mechanics and Analysis 223.2, pp. 1019–1033. DOI: 10.1007/s00205-016-1051-6 (cit. on p. 53).

Truong, M. D., A. Nicolet, G. Demésy, and F. Zolla (Sept. 2020). "Continuous family of exact Dispersive Quasi-Normal Modal (DQNM) expansions for dispersive photonic structures". In: *Opt. Express* 28.20, pp. 29016–29032. DOI: 10.1364/0E.401742 (cit. on pp. 48, 49).

Zworski, M. (Apr. 2017). "Mathematical study of scattering resonances". In: *Bulletin of Mathematical Sciences* 7.1, pp. 1–85. DOI: 10.1007/s13373-017-0099-4 (cit. on pp. 5, 6).