Analysis and Discretization of Time-Domain Impedance Boundary Conditions in Aeroacoustics

PhD Defense, Université de Toulouse

16th October 2018

Florian Monteghetti¹

Supervisors: Denis Matignon,² Estelle Piot¹

¹ONERA-DMPE, Université de Toulouse ²ISAE-SUPAERO, Université de Toulouse

Contact: florian.monteghetti@isae.fr

Cavity

Rigid backplate

Fig. Example of liner.

0 .

Fig. Trent 900 (A380). Inlet lined with a sound absorbing material.

with a sound absorbing material.

Fig. Example of liner.

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Outline					

1 Introduction

- Applicability and admissibility of IBCs
- Existing impedance models
- Objectives

Introduction	Model analysis	DG discretization	Wave equation stability	Conclusion	References
000000	00000	000000	0000	0000	
Outline					

1 Introduction

• Applicability and admissibility of IBCs

- Existing impedance models
- Objectives

 $p = \mathcal{Z}(\boldsymbol{u} \cdot \boldsymbol{n})$

Definition of an impedance boundary condition (IBC) $p = \mathcal{Z}(\boldsymbol{u} \cdot \boldsymbol{n}) \xrightarrow{\text{LTI}} p(t) = \begin{bmatrix} \boldsymbol{z} \star \boldsymbol{u} \cdot \boldsymbol{n} \end{bmatrix} (t)$

 θ

 \Rightarrow Properties of \mathcal{Z}, \mathcal{B} and z, β ?

Introduction	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
IBC: A	dmissibility	conditions			
Intu	ition: an admiss i	i ble <mark>IBC</mark> dissipa	tes energy at $\partial \Omega$.		
Admissibility conditions from System Theory: $u \mapsto \mathcal{Z}(u)$ is admissible if (Beltrami et al. 1966; Zemanian 1965)					
	 real-valued 	 passive 	• car	usal	

 \Rightarrow What do impedance models look like ?

Introduction	Model analysis	DG discretization	Wave equation stability	Conclusion 0000	References
Outline					

1 Introduction

- Applicability and admissibility of IBCs
- Existing impedance models
- Objectives

$$\hat{z}_{\mathsf{phys}}(s) = \frac{1}{\sigma_p} \frac{\hat{p}(0)}{\hat{u}(0)}$$

4

,

 $=_{+\infty} a_0 + a_{1/2}\sqrt{s} + a_1 s + \frac{1}{\sigma_c} \coth\left(b_0 + b_{1/2}\sqrt{s} + b_1 s\right),$ where fractional terms are linked to viscothermal diffusion

$$\mathbf{a}_{1/2}, \mathbf{b}_{1/2} \propto \sqrt{
u}$$
 .

 \Rightarrow Corrections \Rightarrow Expression of $\hat{\beta}_{phys}(s)$ readily follows

$$=_{+\infty} a_0 + a_{1/2} \sqrt{s} + a_1 s + \frac{1}{\sigma_c} \coth\left(b_0 + b_{1/2} \sqrt{s} + b_1 s\right),$$

where fractional terms are linked to viscothermal diffusion

$$a_{1/2}, b_{1/2} \propto \sqrt{
u}$$
 .

 $\Rightarrow {\sf Corrections}$

$$\Rightarrow$$
 Expression of $\hat{\beta}_{phys}(s)$ readily follows

Departure from linear acoustics:

 nonlinear absorption mechanisms 2 base flow effects (aeroacoustics)

$$\mathcal{Z}(\boldsymbol{u}\cdot\boldsymbol{n})=
ho_0 C_{\mathsf{nl}}|\boldsymbol{u}\cdot\boldsymbol{n}|\boldsymbol{u}\cdot\boldsymbol{n}\,,\ C_{\mathsf{nl}}\geq 0.$$

- Evidence: theoretical (Rienstra et al. 2018) & numerical (Zhang et al. 2016)
- Expression of $\mathcal{B} = (\mathcal{Z} \mathcal{I}) \circ (\mathcal{Z} + \mathcal{I})^{-1}$

- Evidence: theoretical (Rienstra et al. 2018) & numerical (Zhang et al. 2016)
- Expression of $\mathcal{B} = (\mathcal{Z} \mathcal{I}) \circ (\mathcal{Z} + \mathcal{I})^{-1}$

Phenomenon 2 Grazing flow $u_0 \neq 0 \Rightarrow$ Impedance \hat{z}_{exp} varies Modeling Empirical & linear impedance correction $\hat{z}_{corr}(s, u_{0*})$ (Cummings 1986)

Working assumption IBC remains locally reacting and

 $\hat{z}_{\mathsf{phys}}(s) = \hat{z}_{\mathsf{phys}}(s, \pmb{u_0})$

Introduction	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Outline					

1 Introduction

- Applicability and admissibility of IBCs
- Existing impedance models
- Objectives

Introduction	Model analysis	DG discretization	Wave equation stability	Conclusion	References
000000	00000	000000	0000	0000	
Objectiv	es				

State of the art

- Physical \neq numerical models
- Numerical models mostly linear
- Admissibility & stability explored by different communities

Objectives

Consider physical, computational, and mathematical aspects of IBCs.

- (a) Time-domain structure of physical impedance models?
- (b) Well-posedness and stability?
- (c) Discretization?
- (d) Nonlinear absorption mechanisms?

Introduction	Model analysis	DG discretization	Wave equation stability	Conclusion	References
000000	00000	000000	0000	0000	
Objectiv	/es				

State of the art

- Physical \neq numerical models
- Numerical models mostly linear
- Admissibility & stability explored by different communities

Objectives

Consider physical, computational, and mathematical aspects of IBCs.

- (a) Time-domain structure of physical impedance models?
- (b) Well-posedness and stability?
- (c) Discretization?
- (d) Nonlinear absorption mechanisms?

Outline Intro Admissibility and examples of IBCs Part I Time-domain analysis of physical models Part II Discontinuous Galerkin discretization Part III Stability of wave equation

Objective Time-domain expression of linear physical models \hat{z}_{phys}

 \Rightarrow Enables to deduce discrete model \hat{z}_{num} from \hat{z}_{phys}

 \Rightarrow Enables to deduce discrete model \hat{z}_{num} from \hat{z}_{phys}

Contributions of Chapter 2:

- ① Characterization of OD kernels
- ② Discretization of OD kernels h (quadrature method)

③ Application to physical models \hat{z}_{phys} , \hat{y}_{phys} , $\hat{\beta}_{phys}$

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Outline					

2 Physical impedance models in the time domain

• Application to CT impedance model

Introduction Model analysis DG discretization Wave equation stability Conclusion References

Application to a CT liner impedance model $(z_c, \sigma_c = 1)$:

$$\hat{\boldsymbol{z}}_{\mathsf{phys}}(s) = \coth(\overbrace{b_0 + b_{1/2}\sqrt{s} + b_1s}^{:=jk_c(s)}) \quad (\Re(s) > 0),$$

with $b_1 > 0$, $b_0, b_{1/2} \ge 0$.

Model analysis 00000 Application to CT model: representation

DG discretization

Application to a CT liner impedance model $(z_c, \sigma_c = 1)$:

$$\widehat{z_{\mathsf{phys}}(s)} = \mathsf{coth}(\overbrace{b_0 + b_{1/2}\sqrt{s} + b_1s}^{:=jk_c(s)}) \quad (\Re(s) > 0),$$

with $b_1 > 0$, $b_0, b_{1/2} \ge 0$.

Introduction

$$\hat{z}_{\mathsf{phys}}(s) = 1 + e^{- au s} \hat{h}(s) \ , \ au \coloneqq 2b_1,$$

with $h \in \mathcal{C}((0,\infty))$ and $e^{-\kappa t} h \in L^1(0,\infty)$ for any $\kappa > 0$.

Conclusion

References

0000 Application to CT model: representation

DG discretization

Application to a CT liner impedance model $(z_c, \sigma_c = 1)$:

$$\hat{z}_{\mathsf{phys}}(s) = \operatorname{coth}(\overbrace{b_0 + b_{1/2}\sqrt{s} + b_1s}^{:=jk_c(s)}) \quad (\Re(s) > 0),$$

with $b_1 > 0$, $b_0, b_{1/2} \ge 0$.

Model analysis

Introduction

$$\hat{z}_{\mathsf{phys}}(s) = 1 + e^{- au s} \hat{h}(s) \ , \ au \coloneqq 2b_1,$$

with $h \in \mathcal{C}((0,\infty))$ and $e^{-\kappa t} h \in L^1(0,\infty)$ for any $\kappa > 0$.

Oscillatory-diffusive representation

Conclusion

 π

2

 π 2 References

3 components: Delay / Oscillatory / Diffusive

(1) Oscillatory-Diffusive

Introduction Model analysis DG discretization Wave equation stability Conclusion References

Two steps to express $z_{phys} \star u(t) = u(t) + h \star u(t - \tau)$.

(1) Oscillatory-Diffusive Convolution expressed with diffusive variable arphi

$$\mathbf{h} \star u(t) = \sum_{k \in \mathbb{Z}} r_k \varphi(t, -s_k) + \int_0^\infty \varphi(t, \xi) \, \mu(\xi) \, \mathrm{d}\xi$$

which can be computed through first-order ODEs

$$\partial_t \varphi(t, \mathbf{x}) = -\mathbf{x} \varphi(t, \mathbf{x}) + u(t), \quad \varphi(t = 0, \mathbf{x}) = 0 \iff \varphi(t, \mathbf{x}) \coloneqq e^{-\mathbf{x}t} \star u.$$
(2) Delay

Introduction Model analysis DG discretization Wave equation stability Conclusion References

Two steps to express $z_{phys} \star u(t) = u(t) + h \star u(t - \tau)$.

(1) Oscillatory-Diffusive Convolution expressed with diffusive variable arphi

$$\mathbf{h} \star u(t) = \sum_{k \in \mathbb{Z}} r_k \varphi(t, -s_k) + \int_0^\infty \varphi(t, \xi) \, \mu(\xi) \, \mathrm{d}\xi$$

which can be computed through first-order ODEs

$$\partial_t \varphi(t, \mathbf{x}) = -\mathbf{x} \varphi(t, \mathbf{x}) + u(t), \quad \varphi(t = 0, \mathbf{x}) = 0 \iff \varphi(t, \mathbf{x}) \coloneqq e^{-\mathbf{x}t} \underbrace{\star}_t u.$$

(2) Delay Delay expressed with hyperbolic variable ψ (x omitted)
Two steps to express $z_{phys} \star u(t) = u(t) + h \star u(t - \tau)$.

(1) Oscillatory-Diffusive Convolution expressed with diffusive variable arphi

$$\mathbf{h} \star u(t) = \sum_{k \in \mathbb{Z}} r_k \varphi(t, -s_k) + \int_0^\infty \varphi(t, \xi) \, \mu(\xi) \, \mathrm{d}\xi$$

which can be computed through first-order ODEs

$$\partial_t \varphi(t, \mathbf{x}) = -\mathbf{x} \varphi(t, \mathbf{x}) + u(t), \quad \varphi(t = 0, \mathbf{x}) = 0 \iff \varphi(t, \mathbf{x}) \coloneqq e^{-\mathbf{x}t} \underset{t}{\star} u.$$

(2) Delay Delay expressed with hyperbolic variable ψ (x omitted)

which can be computed through 1D transport PDE on $(-\tau, 0)$:

$$\partial_t \psi(t, heta) = \partial_ heta \psi(t, heta) \quad (heta \in (- au, 0))$$

Two steps to express $z_{phys} \star u(t) = u(t) + \frac{h}{h} \star u(t - \tau)$.

(1) Oscillatory-Diffusive Convolution expressed with diffusive variable arphi

$$\mathbf{h} \star u(t) = \sum_{k \in \mathbb{Z}} r_k \varphi(t, -s_k) + \int_0^\infty \varphi(t, \xi) \, \mu(\xi) \, \mathrm{d}\xi$$

which can be computed through first-order ODEs

$$\partial_t \varphi(t, \mathbf{x}) = -\mathbf{x} \varphi(t, \mathbf{x}) + u(t), \quad \varphi(t = 0, \mathbf{x}) = 0 \iff \varphi(t, \mathbf{x}) \coloneqq e^{-\mathbf{x}t} \underset{t}{\star} u.$$

(2) Delay Delay expressed with hyperbolic variable ψ (x omitted)

$$\psi(t, \cdot)$$

$$\psi(t, -\tau) = \psi(t, \theta = -\tau)$$
Boundary output
$$\psi(t, \theta = 0) = \varphi(t)$$
Boundary input
$$\theta$$

which can be computed through 1D transport PDE on $(-\tau, 0)$:

$$\partial_t \psi(t, heta) = \partial_ heta \psi(t, heta) \quad (heta \in (- au, 0))$$

$\begin{array}{c|c} \hline \mbox{Model analysis} & \mbox{DG discretization} & \mbox{Wave equation stability} & \mbox{Conclusion} & \mbox{References} \\ \hline \mbox{Odocov} & \mbox$

Model analysis DG discretization Conclusion References Introduction 00000 Application to CT model: discretization The representation of \hat{z}_{phys} suggests $\hat{z}_{\mathsf{num}}(s) \coloneqq 1 + e^{-\tau s} \hat{h}_{\mathsf{num}}(s), \quad \hat{h}_{\mathsf{num}}(s) = \sum_{k=1}^{n_s} \frac{r_k}{s - s_k} + \sum_{k=1}^{n_s} \frac{\mu_k}{s + \xi_k}$ **Time-local** computation of $Z_{num} \star u$ through PDE \circ ODE, $(N_{ub} + 1) \times (N_s + N_{\epsilon})$ variables Oscillatory-Diffusive Cost function $J(r_k, \mu_k, \xi_k, s_k) = \sum_{k=1}^{n} |\hat{h}(j\omega_k) - \hat{h}_{num}(j\omega_k)|^2$ 1 Choose ξ_k , compute s_k and $r_k = \text{Res}(\hat{h}, s_k)$ **2** Compute $\mu_k = \operatorname{argmin} J(r_k, \cdot, \xi_k, s_k)$ **3** (If still needed) adjust $\|\hat{z}_{num} - \hat{z}\|_2$ against experimental data

Model analysis DG discretization Conclusion References Introduction Application to CT model: discretization The representation of \hat{z}_{phys} suggests $\hat{z}_{\mathsf{num}}(s) \coloneqq 1 + e^{-\tau s} \hat{h}_{\mathsf{num}}(s), \quad \hat{h}_{\mathsf{num}}(s) = \sum_{k=1}^{n_s} \frac{r_k}{s - s_k} + \sum_{k=1}^{n_s} \frac{\mu_k}{s + \xi_k}$ **Time-local** computation of $z_{num} \star u$ through PDE \circ ODE, $(N_{ub} + 1) \times (N_s + N_{\epsilon})$ variables Oscillatory-Diffusive Cost function $J(r_k, \mu_k, \xi_k, s_k) = \sum |\hat{h}(j\omega_k) - \hat{h}_{num}(j\omega_k)|^2$ 1 Choose ξ_k , compute s_k and $r_k = \text{Res}(\hat{h}, s_k)$ **2** Compute $\mu_k = \operatorname{argmin} J(r_k, \cdot, \xi_k, s_k)$ **3** (If still needed) adjust $\|\hat{z}_{num} - \hat{z}\|_2$ against experimental data Delay Discontinuous Galerkin (DG) of order N_{ψ} on $(-\tau, 0)$ $\mathsf{PPW}(f) \coloneqq \frac{N_{\psi}}{f}$

11

Introduction 0000000	Model analysis	DG discretization	Wave equation stability	Conclusion 0000	References	
Summary of Part I: Model analysis						
Ques	tions addressed	l in Part I				
(a) Structure of physical impedance models?						
(b)	(b) Well-posedness and stability?					
(c)	Discretization	1?				
(d)	Nonlinear abso	orption mechanis	ms?			

Contributions (Chapter 2)

- (1) Characterization of OD kernels h
- 2 Discretization of OD representation (quadrature method)
- **③** Application to physical models \hat{z}_{phys} , \hat{y}_{phys} , $\hat{\beta}_{phys}$

\Rightarrow Part II: Discretization with Discontinuous Galerkin

Linearized Euler equations on $(0, T) imes \Omega$, $\Omega \subset \mathbb{R}^d$

$$\begin{cases} \partial_t p + (\boldsymbol{u}_0 \cdot \nabla) p + c_0 \nabla \cdot \boldsymbol{u} + \gamma p \nabla \cdot \boldsymbol{u}_0 = 0 \\ \partial_t \boldsymbol{u} + (\boldsymbol{u}_0 \cdot \nabla) \boldsymbol{u} + c_0 \nabla p + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u}_0 + p(\boldsymbol{M}_0 \cdot \nabla) \boldsymbol{u}_0 = 0 \end{cases}$$

with **IBC** on $\Gamma_z \subset \partial \Omega$, $M_0 = u_0/c_0$.

Objective Discretization with Discontinuous Galerkin (DG) method

Contributions of Chapters 5 and 6:

• Continuous, (Semi)-discrete energy analysis \Rightarrow Computational advantage of β , β over z, z

Linearized Euler equations on $(0, T) imes \Omega$, $\Omega \subset \mathbb{R}^d$

$$\begin{aligned} \left\{ \partial_t p + (\boldsymbol{u}_0 \cdot \nabla) p + c_0 \nabla \cdot \boldsymbol{u} + \gamma p \nabla \cdot \boldsymbol{u}_0 = 0 \\ \partial_t \boldsymbol{u} + (\boldsymbol{u}_0 \cdot \nabla) \boldsymbol{u} + c_0 \nabla p + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u}_0 + p(\boldsymbol{M}_0 \cdot \nabla) \boldsymbol{u}_0 = 0 \end{aligned} \right.$$

with IBC on $\Gamma_z \subset \partial \Omega$, $M_0 = u_0/c_0$.

Objective Discretization with Discontinuous Galerkin (DG) method

Contributions of Chapters 5 and 6:

• Continuous, (Semi)-discrete energy analysis \Rightarrow Computational advantage of β , β over z, z

Linearized Euler equations on $(0, T) imes \Omega$, $\Omega \subset \mathbb{R}^d$

$$\begin{aligned} \partial_t p + (\boldsymbol{u}_0 \cdot \nabla) p + c_0 \nabla \cdot \boldsymbol{u} + \gamma p \nabla \cdot \boldsymbol{u}_0 &= 0\\ \partial_t \boldsymbol{u} + (\boldsymbol{u}_0 \cdot \nabla) \boldsymbol{u} + c_0 \nabla p + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u}_0 + p(\boldsymbol{M}_0 \cdot \nabla) \boldsymbol{u}_0 &= 0 \end{aligned}$$

with **IBC** on $\Gamma_z \subset \partial \Omega$, $M_0 = u_0/c_0$.

Objective Discretization with Discontinuous Galerkin (DG) method

Contributions of Chapters 5 and 6:

• Continuous, (Semi)-discrete energy analysis \Rightarrow Computational advantage of β , β over z, z

- Numerical validation on impedance tube
- Numerical application in duct aeroacoustics

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Outline					

O DG discretization of IBCs

- Energy analysis
- Validation on nonlinear impedance tube
- Application to duct aeroacoustics

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Outline					

3 DG discretization of IBCs

• Energy analysis

- Validation on nonlinear impedance tube
- Application to duct aeroacoustics

Introduction Model analysis DG discretization Wave equation stability Conclusion References
Continuous formulation
$$LEEs \text{ written as Friedrichs system}: \text{ Let } \mathbf{v} := \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix}$$

$$\partial_t \mathbf{v} + A(\nabla)\mathbf{v} + B\mathbf{v} = 0, \quad A(\mathbf{n}) = \begin{pmatrix} (\mathbf{u}_0 \cdot \mathbf{n})\mathbb{I}_d & c_0\mathbf{n} \\ c_0\mathbf{n}^{\mathsf{T}} & \mathbf{u}_0 \cdot \mathbf{n} \end{pmatrix}$$
Continuous energy balance:

$$\frac{1}{2}\frac{d}{dt} \|\mathbf{v}(t)\|_{L^2(\Omega)}^2 = -\frac{1}{2}(C(\mathbf{u}_0)\mathbf{v}, \mathbf{v})_{L^2(\Omega)} - \frac{1}{2}(A(\mathbf{n})\mathbf{v}, \mathbf{v})_{L^2(\partial\Omega)}$$
with boundary term

$$(A(\mathbf{n})\mathbf{v}, \mathbf{v})_{L^2(\partial\Omega)} = \int_{\partial\Omega} (\mathbf{u}_0 \cdot \mathbf{n}) \left[p^2 + |\mathbf{u}|^2\right] + 2c_0 \int_{\partial\Omega} p(\mathbf{u} \cdot \mathbf{n})$$
Assumption $\mathbf{u}_0 \cdot \mathbf{n} = 0$ at the impedance boundary Γ_z .
 \Rightarrow Due to this assumption, an admissible IBC yields

$$\int_0^t (A(\boldsymbol{n})\boldsymbol{v},\boldsymbol{v})_{L^2(\Gamma_z)} \,\mathrm{d}\tau \ge 0 \quad (t>0).$$

Uniqueness in $e^{-\kappa t}C((0,\infty); H^1(\Omega)^{d+1})$: well-posedness? (Chapter 3)

$\begin{array}{c|c} \begin{array}{c} \begin{array}{c} \mbox{Model analysis} & \mbox{DG discretization} & \mbox{Wave equation stability} & \mbox{Conclusion} & \mbox{References} \\ \end{array} \\ \hline \begin{array}{c} \mbox{Discontinous Galerkin formulation} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{Continuous problem} & \partial_t \boldsymbol{v} + \mathcal{A} \boldsymbol{v} = 0 \\ \partial_t \boldsymbol{v} + \mathcal{A} \boldsymbol{v} = 0 \\ \end{array} \\ \hline \begin{array}{c} \mbox{with} \boldsymbol{v} := \begin{bmatrix} \boldsymbol{u} \\ p \\ \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{Space discretization} \\ V_h := \mathbb{P}_n^k(\mathcal{T}_h)^{n+1} \\ \end{array} \\ \hline \begin{array}{c} \mbox{Discontinous Galerkin formulation} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{Wave equation stability} \\ \mbox{occo} \\ \end{array} \\ \hline \begin{array}{c} \mbox{Conclusion} \\ \mbox{occo} \\ \end{array} \\ \hline \begin{array}{c} \mbox{References} \\ \mbox{Occo} \\ \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{References} \\ \mbox{References} \\ \mbox{Occo} \\ \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \mbox{References} \\ \mbox{Referen$

Introduction Model analysis DG discretization Wave equation stability Conclusion References
Discontinous Galerkin formulation
Continuous problem
$$\partial_t \mathbf{v} + A\mathbf{v} = 0$$
 with $\mathbf{v} := \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix}$.
Space discretization Mesh sequence $(\mathcal{T}_h)_h$. Approximation space
 $V_h := \mathbb{P}_n^k(\mathcal{T}_h)^{n+1}$ (Di Pietro et al. 2012; Ern et al. 2006)
 $\mathbb{P}_n^k(\mathcal{T}_h) := \{ \mathbf{v} \in L^2(\Omega) \mid \forall \mathcal{T} \in \mathcal{T}_h, \mathbf{v}|_{\mathcal{T}} \in \mathbb{P}_n^k(\mathcal{T}) \}$.
Semi-discrete problem Find $\mathbf{v}_h \in \mathcal{C}^1([0,\infty), V_h)$ such that
 $\partial_t \mathbf{v}_h + A_h \mathbf{v}_h = 0$,
where $\mathcal{A}_h : V_h \to V_h$ is defined by $\forall \mathbf{w}_h \in V_h$,
weak formulation on \mathcal{T}
 $(\mathcal{A}_h \mathbf{v}_h, \mathbf{w}_h)_{L^2(\Omega)} := \sum_{\mathcal{T} \in \mathcal{T}_h} (\mathcal{A}\mathbf{v}_h, \mathbf{w}_h)_{L^2(\mathcal{T})} + \underbrace{((\mathcal{A}(n)\mathbf{v}_h)^* - \mathcal{A}(n)\mathbf{v}_h, \mathbf{w}_h)_{L^2(\partial\mathcal{T})}}_{\text{weak coupling}}$
Objective Definition of numerical flux $(\mathcal{A}(n)\mathbf{v}_h)^*$ to weakly enforce impedance boundary condition at Γ_z ?

$\begin{array}{c|c} \mbox{Introduction} & \mbox{Model analysis} & \mbox{DG discretization} & \mbox{Wave equation stability} & \mbox{Conclusion} & \mbox{References} & \mbox{Weak enforcement of IBCs} & \mbox{Worker of numerical flux} & (A(n) v_h)^* & \mbox{to weakly enforce} & \mbox{impedance boundary condition at } \Gamma_z ? & \mbox{Conclusion} & \mbox{Conclusion} & \mbox{References} & \mbox{References} & \mbox{Conclusion} & \mbox{References} & \mbox{Referen$

 \Rightarrow Centered flux with ghost state $\textbf{\textit{v}}^{g}$

$$(A(n)\mathbf{v})^* \coloneqq \frac{1}{2}A(n)\mathbf{v} + \frac{1}{2}A(n)\mathbf{v}^{\mathrm{g}}, \text{ with } \mathbf{v}^{\mathrm{g}} = \mathbf{v}^{\mathrm{g}}(n, \mathcal{Z}(\mathbf{v}), \mathbf{v}).$$

Model analysis DG discretization Conclusion References Introduction Weak enforcement of IBCs **Objective** Definition of numerical flux $(A(n)v_h)^*$ to weakly enforce impedance boundary condition at Γ_z ? \Rightarrow Centered flux with ghost state \mathbf{v}^{g} $(A(n)\mathbf{v})^* \coloneqq \frac{1}{2}A(n)\mathbf{v} + \frac{1}{2}A(n)\mathbf{v}^{\mathrm{g}}, \text{ with } \mathbf{v}^{\mathrm{g}} = \mathbf{v}^{\mathrm{g}}(n, \mathcal{Z}(\mathbf{v}), \mathbf{v}).$

Definition of admissibility conditions

The flux $(A(n)v)^*$ is said to be *admissible* if it is both consistent and passive.

• (Consistency) Let $\mathbf{v}(t) \in V$ be the exact solution.

$$A(n)\mathbf{v}^{\mathrm{g}} = A(n)\mathbf{v}$$

$$\begin{array}{l} (\mathsf{Passivity}) \; \forall \boldsymbol{v}_h(t) \in V_h, \; t > 0, \\ \\ \frac{1}{2} \int_0^t (\boldsymbol{A}(\boldsymbol{n}) \boldsymbol{v}_h^{\mathsf{g}}, \boldsymbol{v}_h)_{L^2(\Gamma_z)} \, \mathrm{d}\tau \ge 0 \end{array}$$

+ desirable continuity conditions as " $\mathcal{Z}(\mathbf{v}) \to 0$ " or " $\mathcal{Z}(\mathbf{v}) \to \infty$ ".

Model analysis DG discretization References Introduction Weak enforcement of IBCs **Objective** Definition of numerical flux $(A(n)v_h)^*$ to weakly enforce

impedance boundary condition at Γ_z ?

 \Rightarrow Centered flux with ghost state \mathbf{v}^{g}

$$(A(\boldsymbol{n})\boldsymbol{v})^* \coloneqq \frac{1}{2}A(\boldsymbol{n})\boldsymbol{v} + \frac{1}{2}A(\boldsymbol{n})\boldsymbol{v}^{\mathrm{g}}, \quad \text{with } \boldsymbol{v}^{\mathrm{g}} = \boldsymbol{v}^{\mathrm{g}}(\boldsymbol{n}, \mathcal{Z}(\boldsymbol{v}), \boldsymbol{v}).$$

Definition of admissibility conditions

The flux $(A(n)v)^*$ is said to be *admissible* if it is both consistent and passive.

• (Consistency) Let $\mathbf{v}(t) \in V$ be the exact solution.

$$A(n)\mathbf{v}^{\mathrm{g}} = A(n)\mathbf{v}$$

$$\begin{aligned} \text{Passivity} \ \forall \boldsymbol{v}_{h}(t) \in V_{h}, \ t > 0, \\ \frac{1}{2} \int_{0}^{t} (\boldsymbol{A}(\boldsymbol{n}) \boldsymbol{v}_{h}^{g}, \boldsymbol{v}_{h})_{L^{2}(\Gamma_{z})} \, \mathrm{d}\tau \geq 0 \end{aligned}$$

+ desirable continuity conditions as " $\mathcal{Z}(\mathbf{v}) \to 0$ " or " $\mathcal{Z}(\mathbf{v}) \to \infty$ ".

Results

- Consistent and unstable fluxes are possible
- 3 fluxes based on $\mathcal{Z}, \mathcal{Y}, \mathcal{B}$

- \mathcal{Y} may be preferable to \mathcal{Z}
- "Ideal": scattering operator $\mathcal{B} \coloneqq (\mathcal{Z} - \mathcal{I}) \circ (\mathcal{Z} + \mathcal{I})^{-1}$

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability 0000	Conclusion	References
Outline					

3 DG discretization of IBCs

• Energy analysis

• Validation on nonlinear impedance tube

• Application to duct aeroacoustics

- Analytical solution even with nonlinear $\mathcal{B} \Rightarrow$ enables validation

- Analytical solution even with nonlinear $\mathcal{B} \Rightarrow$ enables validation

Focus on algebraic model given by
$$\mathcal{Z}_{C}(u) = a_{0}u + \frac{C_{nl}}{c_{0}}|u|u$$

 $\Rightarrow \mathcal{B}_{\mathcal{C}}(\mathbf{v}) \leq \mathbf{v}$.

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Outline					

O DG discretization of IBCs

- Energy analysis
- Validation on nonlinear impedance tube
- Application to duct aeroacoustics

ArtimonDG(4). 552 triangles. CFL = 0.5. LSERK (8,4) (Toulorge et al. 2012)

ArtimonDG(4). 552 triangles. CFL = 0.5. LSERK (8,4) (Toulorge et al. 2012)

- **1** Continuous, (Semi)-discrete energy analysis ⇒ Computational advantage of β , β over z, z
- Numerical validation on impedance tube
 Numerical application in duct aeroacoustics

 \Rightarrow Part III: Stability of wave equation with IBC

$$\hat{z}(s) = (z_0 + z_{\tau} e^{-\tau s}) + z_1 s + \hat{Z}(s) + \hat{z}_{\text{diff},1}(s) + s \hat{z}_{\text{diff},2}(s) \quad (\Re(s) > 0)$$

where \hat{Z} is strictly proper rational and $\hat{z}_{\text{diff},i} \in L^1_{\text{loc}}$ completely monotone. Limitation Each term is positive-real: $\tau > 0$, $z_{\tau} \in \mathbb{R}$, $z_0 \ge |z_{\tau}|$, $z_1 > 0$. Strategy (Intuition)

$$\hat{z}(s) = (z_0 + z_{\tau} e^{-\tau s}) + z_1 s + \hat{Z}(s) + \hat{z}_{\text{diff},1}(s) + s \, \hat{z}_{\text{diff},2}(s) \quad (\Re(s) > 0)$$

where \hat{Z} is strictly proper rational and $\hat{z}_{\text{diff},i} \in L^1_{\text{loc}}$ completely monotone. Limitation Each term is positive-real: $\tau > 0$, $z_{\tau} \in \mathbb{R}$, $z_0 \ge |z_{\tau}|$, $z_1 > 0$. Strategy (Intuition)

- **1** Find dynamical system in state-space Φ to compute $z \star u \cdot n$
- 2 Formulate an extended Cauchy problem *X* = AX, with extended state X = (u, p, φ) ∈ L²(Ω)ⁿ⁺¹×L²(∂Ω; Φ).

 3 Study energy balance: *E* = *E*_{ac} + *E*_Φ ≤ 0, use Lümer-Phillips.
- **4** Inspect $\sigma(\mathcal{A})$, if needed for stability.

$$\hat{\boldsymbol{z}}(\boldsymbol{s}) = (\boldsymbol{z}_0 + \boldsymbol{z}_{\tau} \boldsymbol{e}^{-\tau \boldsymbol{s}}) + \boldsymbol{z}_1 \boldsymbol{s} + \hat{\boldsymbol{Z}}(\boldsymbol{s}) + \hat{\boldsymbol{z}}_{\text{diff},1}(\boldsymbol{s}) + \boldsymbol{s} \, \hat{\boldsymbol{z}}_{\text{diff},2}(\boldsymbol{s}) \quad (\Re(\boldsymbol{s}) > 0)$$

where \hat{Z} is strictly proper rational and $\hat{z}_{\text{diff},i} \in L^1_{\text{loc}}$ completely monotone. Limitation Each term is positive-real: $\tau > 0$, $z_{\tau} \in \mathbb{R}$, $z_0 \ge |z_{\tau}|$, $z_1 > 0$. Strategy (Intuition)

- **1** Find dynamical system in state-space Φ to compute $z \star u \cdot n$
- Pormulate an extended Cauchy problem *X* = AX, with extended state X = (u, p, φ) ∈ L²(Ω)ⁿ⁺¹×L²(∂Ω; Φ).

 Study energy balance: *E* = *E*_{ac} + *E*_Φ ≤ 0, use Lümer-Phillips.
- **4** Inspect $\sigma(\mathcal{A})$, if needed for stability.

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Outline					

4 Stability of wave equation with IBCs

- Diffusive impedance
- Delay impedance

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Outline					

4 Stability of wave equation with IBCs

- Diffusive impedance
- Delay impedance

$$\hat{z}(s) \coloneqq \frac{\hat{z}_{\mathsf{diff}}(s)}{s+\xi} = \int_0^\infty \frac{1}{s+\xi} \mathsf{d}\mu(\xi)$$

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Model analysis} & \mbox{DG discretization} & \mbox{Wave equation stability} & \mbox{Conclusion} & \mbox{Concl$

 \Rightarrow Realization of $z \star u$ has an energy balance in V_0 where

$$V_{\mathfrak{s}} \coloneqq \left\{ \boldsymbol{\varphi}: \ (0,\infty) \to \mathbb{C} \text{ measurable } \right| \ \int_{0}^{\infty} |\varphi(\xi)|^{2} (1+\xi)^{\mathfrak{s}} \, \mathrm{d}\mu(\xi) < \infty \right\}.$$

Model analysis DG discretization Wave equation stability Conclusion Introduction References Standard diffusive impedance: setup Kernel Let $\mu \geq 0$ Radon measure s.t. $\int (1+\xi)^{-1} d\mu(\xi) < \infty$. $\hat{z}(s) \coloneqq \hat{z}_{\text{diff}}(s) = \int_{0}^{\infty} \frac{1}{s+\xi} d\mu(\xi).$ \Rightarrow Realization of $z \star u$ has an energy balance in V_0 where $V_{\mathfrak{s}} \coloneqq \left\{ \varphi : (0,\infty) \to \mathbb{C} \text{ measurable } \middle| \int_{0}^{\infty} |\varphi(\xi)|^{2} (1+\xi)^{\mathfrak{s}} \, \mathrm{d}\mu(\xi) < \infty \right\}.$ Setup Energy space: $H := \nabla H^1(\Omega) \times L^2(\Omega) \times L^2(\partial\Omega; V_0)$ $X := \begin{pmatrix} u \\ p \\ \vdots \end{pmatrix}, \quad \mathcal{A}X := \begin{pmatrix} -\nabla p \\ -\operatorname{div} u \\ -\mathcal{E}(p + \mu + n) \end{pmatrix}$ $\mathcal{D}(\mathcal{A}) \coloneqq \left\{ (\boldsymbol{u}, \boldsymbol{p}, \boldsymbol{\varphi}) \in \mathcal{H} \middle| \begin{array}{l} (\boldsymbol{u}, \boldsymbol{p}, \boldsymbol{\varphi}) \in \mathcal{H}_{\mathsf{div}}(\Omega) \times \mathcal{H}^{1}(\Omega) \times \mathcal{L}^{2}(\partial\Omega; V_{1}) \\ (-\xi \boldsymbol{\varphi} + \boldsymbol{u} \cdot \boldsymbol{n}) \in \mathcal{L}^{2}(\partial\Omega; V_{0}) \\ p = \int \boldsymbol{\varphi} \, \mathsf{d} \boldsymbol{\mu} \text{ in } \mathcal{H}^{\frac{1}{2}}(\partial\Omega) \end{array} \right\}$

1 " \mathcal{A} is dissipative".

- **2** " \mathcal{A} is injective".
- 3 " $s\mathcal{I} \mathcal{A}$ is bijective for $s \in (0, \infty) \cup j\mathbb{R}^*$ ".

Introduction Model analysis DG discretization Wave equation stability Conclusion References 00000 Standard diffusive impedance: stability

3 steps to prove Asymptotic stability (Arendt et al. 1988; Lyubich et al. 1988)

1 " \mathcal{A} is dissipative". For $\mathcal{E}(t) \coloneqq \|(\boldsymbol{u}, \boldsymbol{p}, \varphi)\|_{H}^{2}$,

$$\dot{\mathcal{E}}(t) = (\mathcal{A}X,X)_{\mathcal{H}} = -\int_0^\infty \xi \|arphi(\cdot,\xi)\|_{L^2(\partial\Omega)}^2 \,\mathrm{d}\mu(\xi) \leq 0.$$

2 " \mathcal{A} is injective".

3 "
$$s\mathcal{I} - \mathcal{A}$$
 is bijective for $s \in (0, \infty) \cup j\mathbb{R}^*$ ".

Introduction Model analysis DG discretization Wave equation stability Conclusion References

3 steps to prove Asymptotic stability (Arendt et al. 1988; Lyubich et al. 1988)

1 " \mathcal{A} is dissipative". For $\mathcal{E}(t) \coloneqq \|(\boldsymbol{u}, \boldsymbol{p}, \varphi)\|_{H}^{2}$,

$$\dot{\mathcal{E}}(t) = (\mathcal{A}X, X)_{\mathcal{H}} = -\int_0^\infty \xi \|\varphi(\cdot, \xi)\|_{L^2(\partial\Omega)}^2 \,\mathrm{d}\mu(\xi) \leq 0.$$

2 " \mathcal{A} is injective". Crucially relies on Hodge decomposition:

 $H_{\operatorname{div} 0,0}(\Omega) \cap \nabla H^1(\Omega) = \{0\}, \quad \operatorname{since} \quad (L^2(\Omega))^d = \nabla H^1(\Omega) \oplus H_{\operatorname{div} 0,0}(\Omega).$

3 "
$$s\mathcal{I} - \mathcal{A}$$
 is bijective for $s \in (0, \infty) \cup j\mathbb{R}^*$ ".

Introduction Model analysis DG discretization Wave equation stability Conclusion References

3 steps to prove Asymptotic stability (Arendt et al. 1988; Lyubich et al. 1988)

1 " \mathcal{A} is dissipative". For $\mathcal{E}(t) \coloneqq \|(\boldsymbol{u}, \boldsymbol{p}, \varphi)\|_{H}^{2}$,

$$\dot{\mathcal{E}}(t) = (\mathcal{A}X, X)_H = -\int_0^\infty \xi \|\varphi(\cdot, \xi)\|_{L^2(\partial\Omega)}^2 \,\mathrm{d}\mu(\xi) \leq 0.$$

2 " \mathcal{A} is injective". Crucially relies on Hodge decomposition:

$$H_{\operatorname{div} 0,0}(\Omega) \cap \nabla H^1(\Omega) = \{0\}, \quad \operatorname{since} \quad (L^2(\Omega))^d = \nabla H^1(\Omega) \oplus H_{\operatorname{div} 0,0}(\Omega).$$

3 " $s\mathcal{I} - \mathcal{A}$ is bijective for $s \in (0, \infty) \cup j\mathbb{R}^*$ ". Key step is result below.

Proposition

Let \hat{z} be a positive-real function. Then, $\forall l \in H^{-1}(\Omega)$ and $s \in \mathbb{C}^*$ such that $\Re(s) \ge 0$, there is a unique $p \in H^1(\Omega)$ solving

$$\forall \psi \in H^{1}(\Omega), \ (\nabla p, \nabla \psi) + s^{2}(p, \psi) + \frac{s}{\hat{z}(s)}(p, \psi)_{L^{2}(\partial \Omega)} = \overline{I(\psi)}, \tag{1}$$

with $\|p\|_{H^1(\Omega)} \leq C(s) \|I\|_{H^{-1}(\Omega)}$.

Ingredients of proof. Fredholm alternative and Rellich identity.

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Outline					

4 Stability of wave equation with IBCs

- Diffusive impedance
- Delay impedance

Kernel $\hat{z}(s) = z_0 + z_{\tau} e^{-\tau s}$ (positive-real iff $z_0 \ge |z_{\tau}|$)

 \Rightarrow Expression of $\mathbb{Z} \star u$ in $L^2(-\tau, 0)$ through transport equation.

$$\mathcal{D}(\mathcal{A}) := \begin{cases} (u, p, \psi) \in H \\ (u, p, \psi) \in H \end{cases} \begin{cases} \text{var} p \in \mathcal{A}(x) \\ \text{var} p \in \mathcal{A}(x) \\ \text{var} p \in \mathcal{A}(x) \\ \text{var}(x) \\$$

$$\mathcal{D}(\mathcal{A}) := \begin{cases} (u, p, \psi) \in H \\ (u, p, \psi) \in H \end{cases} \begin{cases} \text{wave equation stability} & \text{Conclusion} & \text{Vertures} \\ \text{wave equation stability} & \text{Conclusion} & \text{varee} \\ \text{wave equation stability} & \text{wave equation} \\ \text{wave equation} & \text{wave equation} \\ \text{wave equation stability} & \text{wave equation} \\ \text{wave equation stability} & \text{wave equation} \\ \text{wave equation} & \text{wave eq$$

• " \mathcal{A} is dissipative". This holds iff $z_0 \geq |z_{\tau}|$.

$$\hat{\boldsymbol{z}}(\boldsymbol{s}) = (\boldsymbol{z}_0 + \boldsymbol{z}_{\tau} \boldsymbol{e}^{-\tau \boldsymbol{s}}) + z_1 \boldsymbol{s} + \hat{\boldsymbol{Z}}(\boldsymbol{s}) + \hat{\boldsymbol{z}}_{\text{diff},1}(\boldsymbol{s}) + \boldsymbol{s} \, \hat{\boldsymbol{z}}_{\text{diff},2}(\boldsymbol{s}) \quad (\Re(\boldsymbol{s}) > 0)$$

where \hat{Z} is strictly proper rational and $\hat{z}_{\text{diff},i} \in L^1_{\text{loc}}$ completely monotone.

\Rightarrow Overall conclusion

Introduction Model analysis DG discretization 00000 Vave equation stability 0000 References Main contributions & outlook

Contributions

- (a) Structure of physical models?
 - Admissibility using System theory
 - Characterization of OD kernels *h*
 - Application to physical models 2_{phys},

 \hat{y}_{phys} , $\hat{eta}_{\mathsf{phys}}$

(b) Well-posedness and stability?

• Asymptotic stability of wave equation with positive-real IBC

(c) Discretization?

- Discretization of OD representation
- Computational advantage of β, β
 over z, Z
- Numerical application in duct aeroacoustics
- (d) Nonlinear absorption mechanisms?
 - Computation of algebraic *B* and validation in nonlinear impedance tube

Introduction Model analysis DG discretization Wave equation stability Conclusion References

Contributions

- (a) Structure of physical models?
 - Admissibility using System theory
 - Characterization of OD kernels *h*
 - Application to physical models \hat{z}_{phys} ,

 \hat{y}_{phys} , $\hat{eta}_{\mathsf{phys}}$

(b) Well-posedness and stability?

• Asymptotic stability of wave equation with positive-real IBC

(c) Discretization?

- Discretization of OD representation
- Computational advantage of β, β
 over z, Z
- Numerical application in duct aeroacoustics
- (d) Nonlinear absorption mechanisms?
 - Computation of algebraic *B* and validation in nonlinear impedance tube

Outlook

 TDIBC for DDOF liners & "exact" acoustical models Introduction Model analysis DG discretization Wave equation stability Conclusion References

Contributions

- (a) Structure of physical models?
 - Admissibility using System theory
 - Characterization of OD kernels *h*
 - Application to physical models 2_{phys},

 \hat{y}_{phys} , $\hat{eta}_{\mathsf{phys}}$

(b) Well-posedness and stability?

• Asymptotic stability of wave equation with positive-real IBC

(c) Discretization?

- Discretization of OD representation
- Computational advantage of β, β
 over z, Z
- Numerical application in duct aeroacoustics
- (d) Nonlinear absorption mechanisms?
 - Computation of algebraic *B* and validation in nonlinear impedance tube

Outlook

- TDIBC for DDOF liners & "exact" acoustical models
- Computation of differential *B*
- Nonlinear physical modeling

Introduction Model analysis DG discretization 00000 Vave equation stability 000 Performance Performanc

Contributions

- (a) Structure of physical models?
 - Admissibility using System theory
 - Characterization of OD kernels *h*
 - Application to physical models \hat{z}_{phys} ,

 \hat{y}_{phys} , $\hat{eta}_{\mathsf{phys}}$

(b) Well-posedness and stability?

• Asymptotic stability of wave equation with positive-real IBC

(c) Discretization?

- Discretization of OD representation
- Computational advantage of β, β
 over z, Z
- Numerical application in duct aeroacoustics
- (d) Nonlinear absorption mechanisms?
 - Computation of algebraic *B* and validation in nonlinear impedance tube

Outlook

- TDIBC for DDOF liners & "exact" acoustical models
- Computation of differential *B*
- Nonlinear physical modeling

 Quadrature-based discretization of diffusive representations Introduction Model analysis DG discretization Wave equation stability Conclusion References

Contributions

- (a) Structure of physical models?
 - Admissibility using System theory
 - Characterization of OD kernels *h*
 - Application to physical models \hat{z}_{phys} ,

 \hat{y}_{phys} , $\hat{eta}_{\mathsf{phys}}$

(b) Well-posedness and stability?

• Asymptotic stability of wave equation with positive-real IBC

(c) Discretization?

- Discretization of OD representation
- Computational advantage of β, β
 over z, Z
- Numerical application in duct aeroacoustics
- (d) Nonlinear absorption mechanisms?
 - Computation of algebraic *B* and validation in nonlinear impedance tube

Outlook

- TDIBC for DDOF liners & "exact" acoustical models
- Computation of differential *B*
- Nonlinear physical modeling

- Quadrature-based discretization of diffusive representations
- Stability of wave eq. with IBC
- IBCs with Euler or Navier-Stokes

Publications

F. Monteghetti et al. (2016a). "Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models". In: *The Journal of the Acoustical Society of America* 140.3, pp. 1663–1674. DOI: 10.1121/1.4962277

F. Monteghetti et al. (2018b). "Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized Euler equations". In: *Journal of Computational Physics* 375, pp. 393–426. DOI: 10.1016/j.jcp.2018.08.037

Publications (submitted)

F. Monteghetti et al. (2018a). "Asymptotic stability of the multidimensional wave equation coupled with classes of positive real impedance boundary conditions". (Submitted.)

F. Monteghetti et al. (2018d). "Time-local discretization of fractional and related diffusive operators using Gaussian quadrature with applications". (Submitted.)

Communications

F. Monteghetti et al. (2016c). "Simulation temporelle d'un modèle d'impédance de liner en utilisant la représentation diffusive d'opérateurs". In: *13e Congrès Français d'Acoustique*. (Le Mans, France). 000130, pp. 2549–2555

F. Monteghetti et al. (2016b). "High-order time-domain simulation of acoustic impedance models using diffusive representation". In: Poster session of the XVII Spanish-French School Jacques-Louis Lions about Numerical Simulation in Physics and Engineering. (Gijón, Spain)

F. Monteghetti et al. (2017b). "Asymptotic stability of the linearised Euler equations with longmemory impedance boundary condition". In: 13th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2017). (Minneapolis, MN, USA)

F. Monteghetti et al. (2017a). "Stability of linear fractional differential equations with delays: a coupled parabolic-hyperbolic PDEs formulation". In: 20th World Congress of the International Federation of Automatic Control (IFAC). (Toulouse, France). DOI: 10.1016/j.ifacol.2017.08.1966

F. Monteghetti et al. (2018c). "Quadrature-based diffusive representation of the fractional derivative with applications in aeroacoustics and eigenvalue methods for stability". In: *10th Workshop Structural Dynamical Systems: Computational Aspects (SDS2018)*. (Capitolo (Monopoli), Italy)

Analysis and Discretization of Time-Domain Impedance Boundary Conditions in Aeroacoustics

Introduction

- 2 Physical impedance models in the time domain
- 3 DG discretization of IBCs
- 4 Stability of wave equation with IBCs

5 Conclusion

Thanks for your attention. Any questions?

Contact: florian.monteghetti@isae.fr

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Referen	ces l				

- Arendt, W. and C. J. Batty (1988). "Tauberian theorems and stability of one-parameter semigroups". In: *Transactions of the American Mathematical Society* 306.2, pp. 837–852. DOI: 10.1090/S0002-9947-1988-0933321-3 (cit. on pp. 84–87).
- Beltrami, E. J. and M. R. Wohlers (1966). *Distributions and the boundary values of analytic functions*. New York: Academic Press (cit. on pp. 13, 14).
- Bin, J., M. Hussaini, and S. Lee (2009). "Broadband impedance boundary conditions for the simulation of sound propagation in the time domain". In: *The Journal of the Acoustical Society of America* 125.2, pp. 664–675. DOI: 10.1121/1.2999339 (cit. on pp. 22, 23).

Chevaugeon, N., J.-F. Remacle, and X. Gallez (2006). "Discontinuous Galerkin implementation of the extended Helmholtz resonator model in time domain".
In: 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). AIAA Paper 2006-2569. Cambridge, MA, USA. DOI: 10.2514/6.2006-2569 (cit. on pp. 22, 23).

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
References II					

- Cummings, A. (1986). "Transient and multiple frequency sound transmission through perforated plates at high amplitude". In: *The Journal of the Acoustical Society of America* 79.4, pp. 942–951. DOI: 10.1121/1.393691 (cit. on pp. 19–21).
- Davis, S. (1991). "Low-dispersion finite difference methods for acoustic waves in a pipe". In: *The Journal of the Acoustical Society of America* 90.5, pp. 2775–2781. DOI: 10.1121/1.401874 (cit. on pp. 22, 23).
- Di Pietro, D. A. and A. Ern (2012). Mathematical aspects of discontinuous Galerkin methods. Berlin Heidelberg: Springer-Verlag. DOI: 10.1007/978-3-642-22980-0 (cit. on pp. 56-58).

- Ern, A. and J.-L. Guermond (2006). "Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory". In: *SIAM Journal on Numerical Analysis* 44.2, pp. 753–778. DOI: 10.1137/050624133 (cit. on pp. 56–58).
- Fung, K.-Y. and H. Ju (2001). "Broadband Time-Domain Impedance Models". In: AIAA journal 39.8, pp. 1449–1454. DOI: 10.2514/2.1495 (cit. on pp. 22, 23).

Introduction	Model analysis 00000	DG discretization	Wave equation stability	Conclusion	References
Referen	ces III				

- Kinsler, L. E. and A. R. Frey (1962). Fundamentals of acoustics. 2nd ed. New York: John Wiley & Sons (cit. on pp. 7–12).
 - Lyubich, Y. and P. Vũ (1988). "Asymptotic stability of linear differential equations in Banach spaces". In: *Studia Mathematica* 88.1, pp. 37–42 (cit. on pp. 84–87).
- Meissner, M. (1999). "The influence of acoustic nonlinearity on absorption properties of Helmholtz resonators. Part I. Theory". In: Archives of Acoustics 24.2, pp. 179–190 (cit. on pp. 19–21).
- Monteghetti, F., G. Haine, and D. Matignon (2017a). "Stability of linear fractional differential equations with delays: a coupled parabolic-hyperbolic PDEs formulation". In: 20th World Congress of the International Federation of Automatic Control (IFAC). (Toulouse, France). DOI: 10.1016/j.ifacol.2017.08.1966 (cit. on p. 99).
 - (2018a). "Asymptotic stability of the multidimensional wave equation coupled with classes of positive real impedance boundary conditions". (Submitted.) (cit. on p. 98).

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Reference	ces IV				

- Monteghetti, F., D. Matignon, and E. Piot (2018b). "Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized Euler equations". In: *Journal of Computational Physics* 375, pp. 393–426. DOI: 10.1016/j.jcp.2018.08.037 (cit. on p. 98).
- (2018c). "Quadrature-based diffusive representation of the fractional derivative with applications in aeroacoustics and eigenvalue methods for stability". In: 10th Workshop Structural Dynamical Systems: Computational Aspects (SDS2018). (Capitolo (Monopoli), Italy) (cit. on p. 99).
- (2018d). "Time-local discretization of fractional and related diffusive operators using Gaussian quadrature with applications". (Submitted.) (cit. on p. 98).
- Monteghetti, F., D. Matignon, E. Piot, and L. Pascal (2016a). "Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models". In: *The Journal of the Acoustical Society of America* 140.3, pp. 1663–1674. DOI: 10.1121/1.4962277 (cit. on p. 98).

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Reference	ces V				

- Monteghetti, F., D. Matignon, E. Piot, and L. Pascal (2016b). "High-order time-domain simulation of acoustic impedance models using diffusive representation". In: Poster session of the XVII Spanish-French School Jacques-Louis Lions about Numerical Simulation in Physics and Engineering. (Gijón, Spain) (cit. on p. 99).
- (2016c). "Simulation temporelle d'un modèle d'impédance de liner en utilisant la représentation diffusive d'opérateurs". In: *13e Congrès Français d'Acoustique*. (Le Mans, France). 000130, pp. 2549–2555 (cit. on p. 99).
- (2017b). "Asymptotic stability of the linearised Euler equations with long-memory impedance boundary condition". In: 13th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2017). (Minneapolis, MN, USA) (cit. on p. 99).
- Özyörük, Y., L. N. Long, and M. G. Jones (1998). "Time-Domain Numerical Simulation of a Flow-Impedance Tube". In: *Journal of Computational Physics* 146.1, pp. 29–57. DOI: 10.1006/jcph.1998.5919 (cit. on pp. 22, 23).

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
Reference	ces VI				

- Rienstra, S. W. (2006). "Impedance Models in Time Domain, Including the Extended Helmholtz Resonator Model". In: 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). AIAA Paper 2006-2686. Cambridge, MA, USA. DOI: 10.2514/6.2006-2686 (cit. on pp. 22, 23).
 - Rienstra, S. W. and D. K. Singh (2018). "Nonlinear Asymptotic Impedance Model for a Helmholtz Resonator of Finite Depth". In: AIAA Journal 56.5, pp. 1792–1802. DOI: 10.2514/1.J055882 (cit. on pp. 19–21).
- Roche, J.-M. (2011). "Simulation numérique de l'absorption acoustique de matériaux résonants en présence d'écoulement". PhD thesis. Université du Maine (cit. on pp. 19–21).

- Tam, C. (2012). Computational aeroacoustics: A wave number approach. Cambridge: Cambridge University Press, pp. 181–182. ISBN: 978-0-521-80678-7 (cit. on pp. 2–4).
- Tam, C. and L. Auriault (1996). "Time-domain impedance boundary conditions for computational aeroacoustics". In: AIAA journal 34.5, pp. 917–923. DOI: 10.2514/3.13168 (cit. on pp. 22, 23).

Introduction 0000000	Model analysis 00000	DG discretization	Wave equation stability	Conclusion 0000	References
References VII					

- Toulorge, T. and W. Desmet (2012). "Optimal Runge-Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems". In: *Journal of Computational Physics* 231.4, pp. 2067–2091. DOI: 10.1016/j.jcp.2011.11.024 (cit. on pp. 64–69, 71–73).
- Zemanian, A. (1965). Distribution Theory and Transform Analysis. McGraw-Hill (cit. on pp. 13, 14).

Zhang, Q. and D. J. Bodony (2016). "Numerical investigation of a honeycomb liner grazed by laminar and turbulent boundary layers". In: *Journal of Fluid Mechanics* 792, pp. 936–980. DOI: 10.1017/jfm.2016.79 (cit. on pp. 19–21).