Asymptotic stability of LEE with long-memory impedance boundary condition

Theoretical and numerical considerations

WAVES 2017, Minneapolis

19 May 2017

Florian MONTEGHETTI,¹ Denis MATIGNON,² Estelle PIOT,¹ Lucas PASCAL¹

> ¹ONERA – The French Aerospace Lab, Toulouse ²ISAE-SUPAERO, Toulouse

Contact: florian.monteghetti@onera.fr

Introduction	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion References
Outline			

2 Acoustical case: Theory

3 Aeroacoustical case: Numerical method

4 Conclusion

Context. Noise regulations \Rightarrow research effort into sound generation / absorption / propagation.

 Introduction
 Acoustics: Theory
 Aeroacoustics: Numerical method
 Conclusion
 References

 •oo
 •ooo
 •oo</t

Context. Noise regulations \Rightarrow research effort into sound generation / absorption / propagation.

with an impedance boundary condition

$$p(x,t) = Q(\boldsymbol{u}(x,t) \cdot \boldsymbol{n}) \quad x \in \partial \Omega,$$

where Q is an operator that "dissipates" energy.

3

Key components of Z: (Monteghetti, Matignon et al. 2016, JASA)

Key components of *z*: (Monteghetti, Matignon et al. 2016, JASA)

1 Acoustic resonator (Helmholtz then Rayleigh) (Lamb 1910, p.260) $p(t) = k \int_0^t u(\eta) \, \mathrm{d}\eta + m \, \dot{u}(t) \quad \Rightarrow \quad \hat{z}(s) = \frac{k}{s} + m \, s \quad (\Re(s) > 0).$

Key components of *z*: (Monteghetti, Matignon et al. 2016, JASA)

1 Acoustic resonator (Helmholtz then Rayleigh) (Lamb 1910, p.260) $p(t) = k \int_0^t u(\eta) \, \mathrm{d}\eta + m \, \dot{u}(t) \quad \Rightarrow \quad \hat{z}(s) = \frac{k}{s} + m \, s \quad (\Re(s) > 0).$

2 Viscous losses: memoryless and long-memory damping Wave reflection: delay

$$p(t) = \dots + \mathbf{a}_0 u(t) + \mathbf{a}_{1/2} \int_0^t \frac{1}{\sqrt{\pi(t-\eta)}} \star \dot{u}(\eta) \, \mathrm{d}\eta + \mathbf{a}_\tau u(t-\tau)$$
$$\Rightarrow \hat{z}(s) = \dots + \mathbf{a}_0 + \mathbf{a}_{1/2} \sqrt{s} + \mathbf{a}_\tau e^{-s\tau}$$

Introduction	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion References
Outline			

- 2 Acoustical case: Theory
- 3 Aeroacoustical case: Numerical method

4 Conclusion

Introduction 000	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion References
Outline			

Introduction

- 2 Acoustical case: Theory
 - Objectives
 - Well-Posedness
 - Asymptotic stability

3 Aeroacoustical case: Numerical method

4 Conclusion

Motivation: focus on impedance models *z* (basis for numerical method). What are we interested in ?

Motivation: focus on impedance models *z* (basis for numerical method). What are we interested in ?

• Well-posedness $\exists C > 0 : \forall t > 0$, $\|x(t)\|_{\mathcal{H}} \leq C \|x_0\|_{\mathcal{H}}$

• Stability (Luo, Guo and Morgül 2012, Def. 3.1)

Asymptotic $\forall x_0, \|x(t)\|_{\mathcal{H}} \to 0$ for $t \to \infty$ Exponential $\exists C, \omega > 0 : \forall x_0, \forall t > 0, \|x(t)\|_{\mathcal{H}} \leq C e^{-\omega t}$

Strategy:

1 Find dynamical system in state-space Φ to compute $z \star u \cdot n$

- 2 Formulate an extended Cauchy problem X
 [×] = AX, with extended state X = (u, p, φ) ∈ L²(Ω)ⁿ⁺¹×L²(Γ; Φ).
 3 Study energy balance: [÷] ≤ 0, use Lümer-Phillips (Pazy 1983, Thm. 4.3).
- **4** Inspect $\sigma(\mathcal{A})$, if needed for stability.

Kernel. Pure resistance $z(t) = a_0 \ \delta_0(t)$ with $a_0 > 0$. Functional setup. $\mathcal{H} = (L^2(\Omega))^n \times L^2(\Omega), \ V = (H^1(\Omega))^n \times H^1(\Omega)$

$$\mathcal{A}_{\mathsf{ac}}\left[\begin{array}{c}\boldsymbol{u}\\\boldsymbol{p}\end{array}\right] = \left[\begin{array}{c}-\nabla\boldsymbol{p}\\-\nabla\cdot\boldsymbol{u}\end{array}\right], \ \mathcal{D}(\mathcal{A}_{\mathsf{ac}}) = \left\{(\boldsymbol{u},\boldsymbol{p})\in V \mid \boldsymbol{p}_{|\Gamma} = \boldsymbol{a}_{0}\boldsymbol{u}\cdot\boldsymbol{n}_{|\Gamma}\right\}.$$

Introduction Acoustics: Theory Aeroacoustics: Numerical method Conclusion References 000 00000 00000000 00 00 00 00 Well-posedness: memoryless damping 00000000 00000000 000000000 000000000 000000000

Kernel. Pure resistance $z(t) = a_0 \ \delta_0(t)$ with $a_0 > 0$. Functional setup. $\mathcal{H} = (L^2(\Omega))^n \times L^2(\Omega), \ V = (H^1(\Omega))^n \times H^1(\Omega)$

$$\mathcal{A}_{\mathsf{ac}}\left[\begin{array}{c}\boldsymbol{u}\\\boldsymbol{p}\end{array}\right] = \left[\begin{array}{c}-\nabla\boldsymbol{p}\\-\nabla\cdot\boldsymbol{u}\end{array}\right], \ \mathcal{D}(\mathcal{A}_{\mathsf{ac}}) = \left\{(\boldsymbol{u},\boldsymbol{p})\in V \mid \boldsymbol{p}_{|\Gamma} = \boldsymbol{a}_{0}\boldsymbol{u}\cdot\boldsymbol{n}_{|\Gamma}\right\}.$$

Application of Lümer-Phillips. (Luo, Guo and Morgül 2012, 2.29)

• "
$$\mathcal{A}_{ac}$$
 is dissipative"
 $\dot{\mathcal{E}}(t) = (\mathcal{A}_{ac}X, X)_{\mathcal{H}} = -\int_{\Gamma} p \, \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{\sigma} = -a_0 \, \|\boldsymbol{u} \cdot \boldsymbol{n}\|_{L^2(\Gamma)}^2 \leq 0.$

• " $\exists \lambda > 0 : \lambda I - A_{ac}$ surjective" (see (Haddar and Matignon 2008, INRIA)) • Weak formulation: find $p \in H^1(\Omega)$ such that $\forall \theta \in H^1(\Omega)$ $(\nabla p, \nabla \theta)_{L^2(\Omega)} + \frac{\lambda}{a_0} (p, \theta)_{L^2(\Gamma)} + \lambda^2 (p, \theta)_{L^2(\Omega)} = (I, \theta)_{H^1(\Omega)}.$

• Then $\exists ! \boldsymbol{u} \in H^1(\operatorname{div}; \Omega)$.

Regularity: $\boldsymbol{u} \cdot \boldsymbol{n} = p/a_0$ in $H^{-1/2}(\Gamma) \Rightarrow \boldsymbol{u} \cdot \boldsymbol{n} \in H^{1/2}(\Gamma) \Rightarrow \boldsymbol{u} \in H^1(\Omega)$, assuming Ω Lipschitz (Costabel 1990, MMAS).

 $\Rightarrow \mathcal{A}_{ac} \text{ generates a } C_0\text{-semigroup of contractions on } \mathcal{H}.$ This proof *should* not break down provided that z is "dissipative".

Kernel.
$$z(t) = a_0 \ \delta_0(t) + a_{1/2} \frac{\mathbb{1}_{(0,\infty)}(t)}{\sqrt{\pi t}}$$
 with $a_0, a_{1/2} > 0$.

Parabolic realisation. $\hat{z}(s)$ irrational $\Rightarrow \infty$ -dimensional realisation. (Curtain and Zwart 1995)

$$\frac{1}{\sqrt{\pi t}} = \int_0^\infty e^{-\xi t} \, \mathrm{d}\mu(\xi)$$

Kernel.
$$z(t) = a_0 \ \delta_0(t) + a_{1/2} \frac{\mathbb{1}_{(0,\infty)}(t)}{\sqrt{\pi t}}$$
 with $a_0, a_{1/2} > 0$.

Parabolic realisation. $\hat{z}(s)$ irrational $\Rightarrow \infty$ -dimensional realisation.

(Curtain and Zwart 1995)

$$\frac{1}{\sqrt{\pi t}} = \int_0^\infty e^{-\xi t} \, \mathrm{d}\mu(\xi) \Rightarrow \begin{cases} \partial_t \varphi(t,\xi) = -\xi \varphi(t,\xi) + u(t) \cdot \mathbf{n} \\ p(t) = a_0 \, u(t) \cdot \mathbf{n} + a_{1/2} \int_0^\infty \varphi(t,\xi) \, \mathrm{d}\mu(\xi) \end{cases}$$

• State variable $\varphi(t, \cdot) \in \Phi := L^2(0, \infty; d\mu)$ with $d\mu = \frac{1}{\sqrt{\pi\xi}} d\xi$. (Hélie and Matignon 2006a, M3AS) (Matignon 2013)

Kernel.
$$z(t) = a_0 \ \delta_0(t) + a_{1/2} \frac{\mathbb{1}_{(0,\infty)}(t)}{\sqrt{\pi t}}$$
 with $a_0, a_{1/2} > 0$.

Parabolic realisation. $\hat{z}(s)$ irrational $\Rightarrow \infty$ -dimensional realisation.

(Curtain and Zwart 1995)

$$\frac{1}{\sqrt{\pi t}} = \int_0^\infty e^{-\xi t} d\mu(\xi) \Rightarrow \begin{cases} \partial_t \varphi(t,\xi) = -\xi \varphi(t,\xi) + u(t) \cdot \mathbf{n} \\ p(t) = a_0 u(t) \cdot \mathbf{n} + a_{1/2} \int_0^\infty \varphi(t,\xi) d\mu(\xi) \end{cases}$$

• State variable $\varphi(t, \cdot) \in \Phi := L^2(0, \infty; d\mu)$ with $d\mu = \frac{1}{\sqrt{\pi\xi}} d\xi$. (Hélie and Matignon 2006a, M3AS) (Matignon 2013)

Energy balance.

supplied power

$$\begin{array}{l} p \boldsymbol{u} \cdot \boldsymbol{n}(t) \\ = \overline{\frac{a_{1/2}}{2} \frac{d}{dt} \|\varphi\|_{\Phi}^{2}} + \overline{a_{0} \|\boldsymbol{u} \cdot \boldsymbol{n}\|^{2} + a_{1/2} \|\sqrt{\xi} \varphi\|_{\Phi}^{2}} \\ \\ \ge \frac{a_{1/2}}{2} \frac{d}{dt} \|\varphi\|_{\Phi}^{2}
\end{array}$$

Hence, the proof *should* extend to this case!

 Introduction
 Acoustics: Theory
 Aeroacoustics: Numerical method
 Conclusion
 References

 Well-posedness: memoryless & long-memory damping (cont.)

(Partial) Functional setup. $\mathcal{H} = (L^2(\Omega))^n \times (L^2(\Omega)) \times L^2(\Gamma; \Phi)$.

$$\mathcal{A} \left(\begin{array}{c} \boldsymbol{u} \\ \boldsymbol{p} \\ \boldsymbol{\varphi} \end{array} \right) = \left(\begin{array}{c} -\nabla \boldsymbol{p} \\ -\nabla \cdot \boldsymbol{u} \\ -\xi \, \boldsymbol{\varphi} + \boldsymbol{u} \cdot \boldsymbol{n} \end{array} \right)$$

(Partial) Application of Lümer-Phillips.

1 " \mathcal{A} is dissipative"

$$\frac{1}{2}\frac{\mathsf{d}}{\mathsf{d}t}\left[\|(\boldsymbol{u},\boldsymbol{p})\|_{2}^{2}+\int_{\Gamma}a_{1/2}\|\boldsymbol{\varphi}\|_{\Phi}^{2}\,\mathsf{d}\boldsymbol{\sigma}(\boldsymbol{x})\right]=(\mathcal{A}X,X)_{\mathcal{H}}$$

$$(\mathcal{A}X, X)_{\mathcal{H}} = -\int_{\Gamma} \left[p - a_{1/2} \int_{0}^{\infty} \varphi \, \mathrm{d}\mu(\xi) \right] \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{\sigma} - \|\sqrt{a_{1/2}\xi} \, \varphi\|_{L^{2}(\Gamma;\Phi)}^{2}$$
$$= -\int_{\Gamma} a_{0} \, |\boldsymbol{u} \cdot \boldsymbol{n}|^{2} \, \mathrm{d}\boldsymbol{\sigma} \qquad - \|\sqrt{a_{1/2}\xi} \, \varphi\|_{L^{2}(\Gamma;\Phi)}^{2}$$
$$\leq 0.$$

 $\Rightarrow \mathcal{A}$ generates a C_0 -semigroup of contractions on \mathcal{H} .

Introduction Acoustics: Theory Aeroacoustics: Numerical method Conclusion References Well-posedness: memoryless damping & delay

Kernel. $z(t) = a_0 \delta_0(t) + a_\tau \delta_{-\tau}(t)$ with $a_0, a_\tau, \tau > 0$.

Hyperbolic realisation. $\hat{z}(s)$ irrational $\Rightarrow \infty$ -dimensional realisation.

Introduction Acoustics: Theory Aeroacoustics: Numerical method Conclusion References Well-posedness: memoryless damping & delay

Kernel.
$$z(t) = a_0 \delta_0(t) + a_\tau \delta_{-\tau}(t)$$
 with $a_0, a_\tau, \tau > 0$.

Hyperbolic realisation. $\hat{z}(s)$ irrational $\Rightarrow \infty$ -dimensional realisation.

Introduction Acoustics: Theory Aeroacoustics: Numerical method Conclusion References 000 000000 0000000 000 0000000 000 Well-posedness: memoryless damping & delay 0000000 00000000 00000000

Kernel.
$$z(t) = a_0 \, \delta_0(t) + a_\tau \, \delta_{-\tau}(t)$$
 with $a_0, a_\tau, \tau > 0$.

Hyperbolic realisation. $\hat{z}(s)$ irrational $\Rightarrow \infty$ -dimensional realisation.

(Curtain and Zwart 1995, § 2.4) (Engel and Nagel 2000, § VI.6)

Energy balance. No dissipation. There is no " $p \mathbf{u} \cdot \mathbf{n}(t)$ ".

$$\underbrace{\frac{\tau}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\boldsymbol{\psi}\|_{\boldsymbol{\Psi}}^{2}}_{=\frac{1}{2}\left[|\boldsymbol{u}(t)\cdot\boldsymbol{n}|^{2}-|\boldsymbol{u}(t-\tau)\cdot\boldsymbol{n}|^{2}\right]}$$

(Partial) Functional setup. $\mathcal{H} = (L^2(\Omega))^n \times (L^2(\Omega)) \times L^2(\Gamma; \Psi)$ (Partial) Lümer-Phillips. Applies provided that (Monteghetti, Haine and Matignon 2017, IFAC WC)

 $\Re[a_0] > |a_\tau|.$

$$\rho(\mathcal{A}) = \{\lambda \in \mathbb{C} \, | \, \mathcal{N}(\mathcal{A}_{\lambda}) = \{0\} \text{ and } R(\mathcal{A}_{\lambda}) = \mathcal{H}\}.$$

- Fredholm alternative on weak formulation, using embedding $H^1(\Omega) \subset H^{1/2}(\Omega)$ (Lions and Magenes 1972, Thm. 16.1).
- $0 \notin \sigma_p(\mathcal{A}).$

Introduction	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion	References
Outline				

Introduction

2 Acoustical case: Theory

3 Aeroacoustical case: Numerical method

- Discontinuous Galerkin formulation
- Numerical illustrations

4 Conclusion

$\begin{array}{c|c} \label{eq:linearised} \hline \mbox{Acoustics: Theory} & \mbox{Aeroacoustics: Numerical method} & \mbox{Conclusion} & \mbox{References} \\ \hline \mbox{Discontinuous Galerkin method} (DG) \\ \mbox{Linearised Euler equations on } \Omega \subset \mathbb{R}^n \mbox{ with base flow } \boldsymbol{u}_0 \end{array}$

DG formulation.Triangulation Ω_h . $\boldsymbol{q_h} \in V_h$, $\boldsymbol{\theta_h} \in V_h$

$$(\partial_t \boldsymbol{q}_h, \boldsymbol{\theta}_h)_{\Omega_k} - (A_i \cdot \boldsymbol{q}_h, \partial_i \boldsymbol{\theta}_h)_{\Omega_k} + (B \cdot \boldsymbol{q}_h, \boldsymbol{\theta}_h)_{\Omega_k} = -\int_{\partial \Omega_k} \begin{bmatrix} \boldsymbol{n} \cdot \boldsymbol{f}_p^* \ \boldsymbol{\theta}_h^u \\ \boldsymbol{n} \cdot \boldsymbol{f}_u^* \ \boldsymbol{\theta}_h^p \end{bmatrix} \mathrm{d}\boldsymbol{\sigma}$$

DG formulation features

- V_h : Lagrange basis, size N_p (Hesthaven and Warburton 2008, § 6.1)
- Upwind flux for $m{u_0}\in \mathcal{C}^1(\overline\Omega)^n$ (Hesthaven and Warburton 2008, § 2.4)

 \Rightarrow Impedance boundary condition?

Impedance boundary condition.

$$p(x,t) = a_0 \boldsymbol{u} \cdot \boldsymbol{n}(x,t) + a_i Q_i(\boldsymbol{u}(x,t) \cdot \boldsymbol{n}) \quad x \in \Gamma$$

where $a_0, a_i \ge 0$ and $Q_i \ne I$ is

- A delay: $Q_i(\boldsymbol{u}\cdot\boldsymbol{n}) = \boldsymbol{u}(\cdot-\tau)\cdot\boldsymbol{n}$, or
- An operator with dissipative realisation in state-space Φ_i.
 Examples: "∂_t" (Φ_i = ℝ) and "∂^{1/2}_t" (Φ_i = L²(0,∞; dμ)).

Impedance boundary condition.

$$p(x,t) = a_0 \boldsymbol{u} \cdot \boldsymbol{n}(x,t) + a_i Q_i(\boldsymbol{u}(x,t) \cdot \boldsymbol{n}) \quad x \in \Gamma$$

where $a_0, a_i \ge 0$ and $Q_i \ne I$ is

- A delay: $Q_i(\boldsymbol{u}\cdot\boldsymbol{n}) = \boldsymbol{u}(\cdot-\tau)\cdot\boldsymbol{n}$, or
- An operator with dissipative realisation in state-space Φ_i . Examples: " ∂_t " ($\Phi_i = \mathbb{R}$) and " $\partial_t^{1/2n}$ ($\Phi_i = L^2(0, \infty; d\mu)$).

Assumption: $u_0 \cdot n = 0$ on Γ , so that

$$\boldsymbol{f}_{\boldsymbol{q}} = \boldsymbol{q} = [\boldsymbol{u}, \boldsymbol{p}].$$

• If $a_i \neq 0$, then L^2 -stability is achieved for $\alpha = -1$.

• If
$$a_i = 0$$
, then L^2 -stability is achieved for $\alpha \in [-1, 1]$.

• If
$$a_i \neq 0$$
, then L^2 -stability is achieved for $\alpha = -1$.

Noticeable values:

•
$$\alpha = 1 \iff p_z = p$$
, $\alpha = -1 \iff u_z = u$

•
$$\alpha = eta_0$$
, with $eta_0 = (a_0 - 1)/(a_0 + 1)$ (reflection coefficient)

$$\boldsymbol{q}_{\boldsymbol{z}} = \begin{bmatrix} -1 \ \boldsymbol{l} & \frac{2}{a_0} \ \boldsymbol{n} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \cdot \boldsymbol{q} + a_i \begin{bmatrix} -\frac{2}{a_0} \ \boldsymbol{n} \\ 0 \end{bmatrix} Q_i(\boldsymbol{u} \cdot \boldsymbol{n})$$

- If $a_i \neq 0$, then L^2 -stability is achieved for $\alpha = -1$.

Noticeable values:

•
$$\alpha = 1 \iff p_z = p$$
, $\alpha = -1 \iff u_z = u$

• $\alpha = \beta_0$, with $\beta_0 = (a_0 - 1)/(a_0 + 1)$ (reflection coefficient)

$$\boldsymbol{q}_{\boldsymbol{z}} = \begin{bmatrix} 1 \ \boldsymbol{l} & \boldsymbol{0} \\ 2\boldsymbol{a}_0 \ \boldsymbol{n}^{\mathsf{T}} & -1 \end{bmatrix} \cdot \boldsymbol{q} + \boldsymbol{a}_i \begin{bmatrix} \boldsymbol{0} \\ 2 \end{bmatrix} Q_i (\boldsymbol{u} \cdot \boldsymbol{n})$$

The general expression of the ghost state
$$q_z$$
 is

$$\begin{bmatrix} -\alpha & \frac{1}{2}(1+\alpha) & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}(1+\alpha) & \frac{1}{2}(1+\alpha) \end{bmatrix}$$

$$\boldsymbol{q}_{\boldsymbol{z}} = \begin{bmatrix} -\alpha \, \boldsymbol{l} & \frac{1}{a_0} (1+\alpha) \, \boldsymbol{n} \\ a_0(1-\alpha) \, \boldsymbol{n}^{\mathsf{T}} & \alpha \end{bmatrix} \cdot \boldsymbol{q} + a_i \begin{bmatrix} -\frac{1}{a_0} (1+\alpha) \, \boldsymbol{n} \\ 1-\alpha \end{bmatrix} Q_i(\boldsymbol{u} \cdot \boldsymbol{n})$$

• If
$$a_i = 0$$
, then L^2 -stability is achieved for $\alpha \in [-1, 1]$.

• If
$$a_i \neq 0$$
, then L^2 -stability is achieved for $\alpha = -1$.

Noticeable values:

•
$$\alpha = 1 \iff p_z = p$$
, $\alpha = -1 \iff u_z = u$

•
$$lpha=eta_0$$
, with $eta_0=(a_0-1)/(a_0+1)$ (reflection coefficient)

$$\boldsymbol{q}_{\boldsymbol{z}} = \begin{bmatrix} -\beta_0 \, \boldsymbol{i} & (1-\beta_0) \, \boldsymbol{n} \\ (1+\beta_0) \, \boldsymbol{n}^{\mathsf{T}} & \beta_0 \end{bmatrix} \cdot \boldsymbol{q} + \boldsymbol{a}_i \begin{bmatrix} -(1-\beta_0) \, \boldsymbol{n} \\ 1-\beta_0 \end{bmatrix} Q_i(\boldsymbol{u} \cdot \boldsymbol{n})$$

Theorem. L^2 -stability.

The general expression of the ghost state \boldsymbol{q}_z is

$$\boldsymbol{q}_{\boldsymbol{z}} = \begin{bmatrix} -\alpha \, l & \frac{1}{a_0} (1+\alpha) \, \boldsymbol{n} \\ a_0(1-\alpha) \, \boldsymbol{n}^{\mathsf{T}} & \alpha \end{bmatrix} \cdot \boldsymbol{q} + a_i \begin{bmatrix} -\frac{1}{a_0} (1+\alpha) \, \boldsymbol{n} \\ 1-\alpha \end{bmatrix} Q_i(\boldsymbol{u} \cdot \boldsymbol{n})$$

• If
$$a_i = 0$$
, then L^2 -stability is achieved for $\alpha \in [-1, 1]$.

• If
$$a_i \neq 0$$
, then L^2 -stability is achieved for $\alpha = -1$.

Noticeable values:

•
$$\alpha = 1 \iff p_z = p$$
, $\alpha = -1 \iff u_z = u$

• $\alpha = \beta_0$, with $\beta_0 = (a_0 - 1)/(a_0 + 1)$ (reflection coefficient) **Proof.** Let us define

$$\boldsymbol{q}_{\boldsymbol{z}} \coloneqq \begin{bmatrix} \alpha_1 \boldsymbol{I} & \alpha_2 \boldsymbol{n} \\ \alpha_3 \boldsymbol{n}^{\mathsf{T}} & \alpha_4 \end{bmatrix} \cdot \boldsymbol{q} + \begin{bmatrix} \gamma_1^i \\ \gamma_2^i \end{bmatrix} Q_i(\boldsymbol{u} \cdot \boldsymbol{n}).$$

The proof breaks down into two steps:

Compatibility conditions
 Discrete energy balance

Generic expression of q_z

$$\boldsymbol{q}_{\boldsymbol{z}} \coloneqq \begin{bmatrix} \alpha_1 \, \boldsymbol{l} & \alpha_2 \, \boldsymbol{n} \\ \alpha_3 \, \boldsymbol{n}^{\mathsf{T}} & \alpha_4 \end{bmatrix} \cdot \boldsymbol{q} + \begin{bmatrix} \gamma_1^i \\ \gamma_2^i \end{bmatrix} Q_i(\boldsymbol{u} \cdot \boldsymbol{n}). \tag{1}$$

Compatibility conditions.
 (a) Far a (1) should a

(a) For $\boldsymbol{q} = \boldsymbol{q}_z$, (1) should give

$$p = a_0 \boldsymbol{u} \cdot \boldsymbol{n} + a_i Q_i (\boldsymbol{u} \cdot \boldsymbol{n})$$

(b) Since we use a central flux, (1) should give

$$\frac{p+p_z}{2} = a_0 \frac{\boldsymbol{u}+\boldsymbol{u}_z}{2} \cdot \boldsymbol{n} + a_i Q_i(\boldsymbol{u}\cdot\boldsymbol{n})$$

Both these conditions yield

$$\boldsymbol{q}_{\boldsymbol{z}} = \begin{bmatrix} -\alpha \boldsymbol{l} & \frac{1}{a_0}(1+\alpha) \boldsymbol{n} \\ a_0(1-\alpha) \boldsymbol{n}^{\mathsf{T}} & \alpha \end{bmatrix} \cdot \boldsymbol{q} + a_i \begin{bmatrix} -\frac{1}{a_0}(1+\alpha) \boldsymbol{n} \\ 1-\alpha \end{bmatrix} Q_i(\boldsymbol{u} \cdot \boldsymbol{n}),$$

where α is a **seemingly** free parameter.

Let us assume that Q_i has a dissipative realisation

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\varphi^{i}\|_{\Phi_{i}}^{2}\leq a_{i}Q_{i}(\boldsymbol{u}\cdot\boldsymbol{n})\boldsymbol{u}\cdot\boldsymbol{n},$$

so that the continuous energy balance is

$$\frac{1}{2}\frac{\mathsf{d}}{\mathsf{d}t}\left[\|\boldsymbol{u}\|_{2}^{2}+\|\boldsymbol{p}\|_{2}^{2}+\|\sqrt{a_{i}}\varphi^{i}\|_{L^{2}(\Gamma;\Phi_{i})}^{2}\right]\leq-\int_{\partial\Omega}\left[\underline{\boldsymbol{p}-a_{i}Q_{i}(\boldsymbol{u}\cdot\boldsymbol{n})}\right]\boldsymbol{u}\cdot\boldsymbol{n}\,\mathsf{d}\sigma$$

2 Discrete energy balance on element k (w/o upwind contrib.)

$$\frac{\mathsf{d}}{\mathsf{d}t}\mathcal{E}_h^k \leq -\int_{\partial\Omega_k} \left[\frac{p_z \boldsymbol{u_h} + p_h \boldsymbol{u_z}}{2} \cdot \boldsymbol{n} - a_i Q_i(\boldsymbol{u_h} \cdot \boldsymbol{n})\right] \mathsf{d}\sigma$$

 $=a_0|\boldsymbol{u}\cdot\boldsymbol{n}|^2$

Let us assume that Q_i has a dissipative realisation

$$\frac{1}{2}\frac{\mathsf{d}}{\mathsf{d}t}\|\varphi^{i}\|_{\Phi_{i}}^{2} \leq \mathsf{a}_{i}Q_{i}(\boldsymbol{u}\cdot\boldsymbol{n})\boldsymbol{u}\cdot\boldsymbol{n},$$

so that the continuous energy balance is $\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left[\|\boldsymbol{u}\|_{2}^{2} + \|\boldsymbol{p}\|_{2}^{2} + \|\sqrt{a_{i}}\varphi^{i}\|_{L^{2}(\Gamma;\Phi_{i})}^{2} \right] \leq -\int_{\partial\Omega} \underbrace{\left[\boldsymbol{p} - a_{i}Q_{i}(\boldsymbol{u}\cdot\boldsymbol{n})\right]\boldsymbol{u}\cdot\boldsymbol{n}}_{\left[\boldsymbol{p} - a_{i}Q_{i}(\boldsymbol{u}\cdot\boldsymbol{n})\right]\boldsymbol{u}\cdot\boldsymbol{n}} \mathrm{d}\boldsymbol{\sigma}.$

2 Discrete energy balance on element k (w/o upwind contrib.)

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}_{h}^{k} \leq -\int_{\partial\Omega_{k}}\left[\frac{p_{z}\boldsymbol{u}_{h}+p_{h}\boldsymbol{u}_{z}}{2}\cdot\boldsymbol{n}-a_{i}Q_{i}(\boldsymbol{u}_{h}\cdot\boldsymbol{n})\right]\mathrm{d}\boldsymbol{\sigma}\\ &\leq -\frac{1}{2}\int_{\partial\Omega_{k}}\left[\frac{1+\alpha}{a_{0}}|p_{h}|^{2}+(1-\alpha)a_{0}|\boldsymbol{u}_{h}\cdot\boldsymbol{n}|^{2}\right]\mathrm{d}\boldsymbol{\sigma}+\frac{1}{2}\int_{\partial\Omega}\boldsymbol{\Delta}_{i}Q_{i}(\boldsymbol{u}_{h}\cdot\boldsymbol{n})\mathrm{d}\boldsymbol{\sigma}, \end{split}$$

where $\Delta_i := a_i(1 + \alpha) \left[\frac{1}{a_0} p_h + \boldsymbol{u_h} \cdot \boldsymbol{n} \right]$. Distinguish the cases $a_i = 0$ and $a_i \neq 0$ to conclude. (Delay case similar.)

Introduction	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion References
Summary			

Summary. For IBC $p = a_0 \boldsymbol{u} \cdot \boldsymbol{n} + a_i Q_i (\boldsymbol{u} \cdot \boldsymbol{n})$, the DG formulation is

$$(\partial_t \boldsymbol{q}_h, \boldsymbol{\theta}_h)_{\Omega_k} = \underbrace{\stackrel{\text{standard}}{\dots}}_{-\int_{\partial\Omega_k}} a_i \begin{bmatrix} \frac{1}{a_0}(1+\alpha)\,\theta_h^p\\ (1-\alpha)\boldsymbol{n}\cdot\boldsymbol{\theta}_h^u \end{bmatrix} \boldsymbol{Q}_i(\boldsymbol{u}_h\cdot\boldsymbol{n})\,\mathrm{d}\boldsymbol{\sigma}.$$

Accurate evaluation of $Q_i \Rightarrow$ high-order simulation.

Global (time-local) formulation:

 $\dot{\boldsymbol{x}}_{\boldsymbol{h}} = \boldsymbol{\mathcal{A}}_{\boldsymbol{h}} \boldsymbol{x}_{\boldsymbol{h}} \quad \text{with } \boldsymbol{x}_{\boldsymbol{h}} \coloneqq (\boldsymbol{q}_{\boldsymbol{h}}, \varphi_{\boldsymbol{h}}, \psi_{\boldsymbol{h}}).$

Stability study $\Rightarrow \omega_0(\mathcal{A}_h)$ (approximation of $\omega_0(\mathcal{A})$).

 \Rightarrow At the other end of the spectrum...

■ Value $\alpha = -1$ leads to scaling $\max_{\lambda_h \in \sigma(\mathcal{A}_h)} |\lambda_h| = \mathcal{O}(a_0)$.

• Value $\alpha = \beta_0 \in [-1, 1]$ yields $\mathcal{O}(1)$.

Introduction Acoustics: Theory Aeroacoustics: Numerical method Conclusion References Illustration: time-domain simulation Conclusion Conclusion References

Computational case Infinite 2D duct.

DG: N = 4. Mesh: $N_K = 688$.

$$\hat{z}(s,x) = \infty$$
 (Rigid Wall)

Introduction Acoustics: Theory Aeroacoustics: Numerical method Conclusion References Illustration: time-domain simulation Computational case Infinite 2D duct.

DG: N = 4. Mesh: $N_K = 688$.

$$\hat{z}(s,x) = a_{1/2}\sqrt{s}$$
 (Soft Wall)

Introduction Acoustics: Theory Aeroacoustics: Numerical method Conclusion References Illustration: time-domain simulation Conclusion Conclusion

Computational case Infinite 2D duct.

DG: N = 4. Mesh: $N_K = 688$.

$$\hat{z}(s,x) = a_{1/2}\sqrt{s}$$
 (Soft Wall)

$$\hat{z}(s,x) = a_{1/2}(x)\sqrt{s}$$
 (Soft Wall)

DG: N = 4. Mesh: $N_K = 688$.

$$\hat{z}(s,x) = 0$$
 (Soft-Hard transition)

Introduction	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion	References
Outline				

1 Introduction

- 2 Acoustical case: Theory
- 3 Aeroacoustical case: Numerical method

ConclusionConclusion

Introduction	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion Reference ●0	es
Conclusio	n ////////////////////////////////////			

Takeaways

- Time-local formulation (parabolic φ / hyperbolic ψ) of realistic impedance model $\hat{z}(s) = \frac{1}{\sqrt{s}} + \frac{e^{-s\tau}}{e^{-s\tau}}$
- W.P. & stability (coupled formulation (p, u, φ, ψ))
- Stable DG formulation (ghost state \boldsymbol{q}_z) with dissipative boundary operator Q
 - \Rightarrow High-order time-domain simulation (CAA)
 - \Rightarrow Eigenvalue approach to stability

Perspectives	
 Proof extensions 	 Advanced applications
 Control problems 	 Electromagnetics (CEM)

Introduction	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion ○●	References
Conclusic	on /////			

- 2 Acoustical case: Theory
- 3 Aeroacoustical case: Numerical method

Appendix

Thanks for your attention. Any questions?

(Contact: florian.monteghetti@onera.fr)

Introduction 000	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion	References
Reference	es l			

- Arendt, W. and C. J. Batty (1988). "Tauberian theorems and stability of one-parameter semigroups". In: *Transactions of the American Mathematical Society* 306.2, pp. 837–852 (cit. on pp. 22–24).
- Benzoni-Gavage, S. and D. Serre (2007). Multi-dimensional hyperbolic partial differential equations: First-order Systems and Applications. Oxford University Press (cit. on p. 82).
- Brazier, J.-P. (2011). "Derivation of an exact energy balance for Galbrun equation in linear acoustics". In: *Journal of Sound and Vibration* 330.12, pp. 2848–2868. DOI: 10.1016/j.jsv.2011.01.009 (cit. on p. 83).
- Cantrell, R. H. and R. W. Hart (1964). "Interaction between Sound and Flow in Acoustic Cavities: Mass, Momentum, and Energy Considerations". In: *The Journal of the Acoustical Society of America* 36.4, pp. 697–706. DOI: 10.1121/1.1919047 (cit. on p. 83).
- Cazenave, T. and A. Haraux (1998). An introduction to semilinear evolution equations. Oxford University Press (cit. on pp. 78, 79).

Introduction	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion References
Reference	s		

- Costabel, M. (1990). "A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains". In: *Mathematical Methods in the Applied Sciences* 12.4, pp. 365–368. DOI: 10.1002/mma.1670120406 (cit. on pp. 13, 14).
 - Curtain, R. F. and H. Zwart (1995). An Introduction to Infinite-Dimensional Linear Systems Theory. Vol. 21. Text in Applied Mathematics. New York: Springer. ISBN: 978-1-4612-8702-5 (cit. on pp. 15–17, 19–24).
- Engel, K.-J. and R. Nagel (2000). One-parameter semigroups for linear evolution equations. New York: Springer-Verlag (cit. on pp. 19–21).
- Haddar, H. and D. Matignon (2008). Theoretical and numerical analysis of the Webster Lokshin model. Tech. rep. 6558. INRIA (cit. on pp. 13, 14).
- Heleschewitz, D. (2000). "Analyse et simulation de systemes différentiels fractionnaires et pseudo-différentiels sous representation diffusive". PhD thesis. ENST Paris (cit. on p. 86).

Introduction 000	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion	References
Reference	s III			

- Hélie, T. and D. Matignon (2006a). "Diffusive representations for the analysis and simulation of flared acoustic pipes with visco-thermal losses". In: *Mathematical Models and Methods in Applied Sciences* 16.04, pp. 503–536. DOI: 10.1142/S0218202506001248 (cit. on pp. 15–17).
- (2006b). "Representations with poles and cuts for the time-domain simulation of fractional systems and irrational transfer functions". In: Signal Processing 86.10, pp. 2516–2528. DOI: 10.1016/j.sigpro.2006.02.017 (cit. on p. 86).

Hesthaven, J. S. and T. Warburton (2008). Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Vol. 54. Texts in Applied Mathematics. New York: Springer. DOI: 10.1007/978-0-387-72067-8 (cit. on p. 26).

Introduction 000	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion References
Reference	s IV		

- Joubert, L. (2010). "Approche asymptotique pour l'étude mathématique et la simulation numérique de la propagation du son en présence d'un écoulement fortement cisaillé". PhD thesis. France: École Polytechnique (cit. on p. 81).
- Khamis, D. and E. J. Brambley (2016). "Acoustic boundary conditions at an impedance lining in inviscid shear flow". In: *Journal of Fluid Mechanics* 796, pp. 386–416. DOI: 10.1017/jfm.2016.273 (cit. on p. 81).
- Lamb, H. (1910). Dynamical theory of sound. London Edward Arnold (cit. on pp. 6–8, 68–70).
- LaSalle, J. (1968). "Stability theory for ordinary differential equations". In: Journal of Differential Equations 4.1, pp. 57–65. DOI: 10.1016/0022-0396(68)90048-X (cit. on pp. 78, 79).

Lions, J. and E. Magenes (1972). Non-Homogeneous Boundary Value Problems and Applications Vol.I. Berlin: Springer-Verlag (cit. on pp. 22–24).

Intro 000	oduction Acou	u stics: Theory 000	Aeroacoustics: 000000000	Numerical method	Conclusion 00	References
Re	eferences V					
	Luo, ZH., B infinite din	Z. Guo and nensional syst	Ö. Morgül (2 tems with app	2012). Stability lications. Lond	and stabilizat	ion of /erlag
	Lyubich, Y. a equations i (cit. on pp	ind P. Vũ (19 in Banach spa . 22–24).	188). "Asympt aces". In: <i>Stu</i>	otic stability of Idia Mathematic	linear differer ca 88.1, pp. 3	itial 7–42
	Matignon, D. well-posed	and H. J. Zu linear system	wart (in revisi s". In: <i>Int. J</i> .	on). "Standard . <i>Control</i> (cit. o	diffusive syste n p. 75).	ms as
	Matignon, D. overview". Differentia http://oa	(2013)."Fra In: <i>IFAC wo</i> <i>I Equations,</i> atao.univ-t	ctional equat rkshop on Cor CPDE'13. Par coulouse.fr	ions and diffusiv <i>ntrol of Systems</i> is, France. URL /8974/ (cit. on	ve systems: an 5 <i>Modeled by 1</i> .: pp. 15–17).	Partial
	Matignon, D. Webster-Lo <i>Fields</i> 4.4, pp. 22–24)	and C. Prieu okshin equati pp. 481–500	ır (2014). "As on". In: <i>Mati</i> . DOI: 10.393	ymptotic stabili hematical Contr 34/mcrf.2014.	ity of ol and Related 4.481 (cit. o	d n

Introduction 000	Acoustics: Theory 000000	Aeroacoustics: Numerical method	Conclusion 00	References
Reference	es VI			

Monteghetti, F., D. Matignon et al. (2016). "Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models". In: *The Journal of the Acoustical Society of America* 140.3, pp. 1663–1674. DOI: 10.1121/1.4962277 (cit. on pp. 6–8).

Monteghetti, F., G. Haine and D. Matignon (2017). "Stability of Linear Fractional Differential Equations with Delays: a coupled Parabolic-Hyperbolic PDEs formulation". In: 20th World Congress of the International Federation of Automatic Control (IFAC). (Toulouse, France) (cit. on pp. 19–21).

Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations. 2nd ed. New York: Springer-Verlag (cit. on pp. 11, 12).

Introduction	Acoustics: Theory	Aeroacoustics: Numerical method	Conclusion F	References
Reference	s VII			2

 Toulorge, T. and W. Desmet (2012). "Optimal Runge-Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems". In: *Journal of Computational Physics* 231.4, pp. 2067–2091. ISSN: 0021-9991. DOI: 10.1016/j.jcp.2011.11.024 (cit. on pp. 51–55).