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Abstract

A plasmonic device with a non-smooth boundary
can exhibit strongly-oscillating surface waves whose
phase velocities vanish as they reach the corners.
This work investigates in the quasi-static limit the
existence of corner resonances, which are analogous
to scattering resonances in the sense that the local
behavior at each corner plays the role of the be-
havior at infinity. Resonant contrasts are sought as
eigenvalues of the transmission problem with com-
plex scaling applied at corners. Since the scaling
function must depend upon the contrast, the corre-
sponding eigenvalue problem is nonlinear.
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1 Definition of corner resonances

This work focuses on the transmission problem
div (e(x) 'Vu(z)) =0 (z € Q CR?) 0
u(xz) =0 (x €09Q),

where the differentiations are weak, {2 is a bounded
C°° domain, and ¢ is piecewise constant

e(x) =emla, (@) + calg g, (2), ()

where €2, is a piecewise-smooth domain model-
ing the plasmonic device, see Figure 1. Typically,
€m depends upon the frequency w through a physi-
cal model; this dependency need not be introduced
herein since w does not appear explicitly in the quasi-
static approximation (1). If the contrast

Em

K= —
€d

is not real, then the only solution of (1) in H*(Q) is
u = 0. Let us review some results for x € R.

If 012, is smooth there is a sequence of real
eigenvalues (ky,),,, for which (1) has a non-null so-
lution, accumulating at —1 [3, Thm. 1]. These con-
trasts are associated with surface waves known as
surface plasmons, whose energy-concentrating prop-
erties are employed in many applications.
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Figure 1: Transmission problem on 2. The plas-
monic inclusion €2, has a corner of angle ¢.

Let 02,,, have one corner x. of angle ¢ € (0, ).
If & lies in the critical interval [1, Tab. 1] [4]

¢ —27m o dd
I = —1|u|-1, = peddy e,
[ 5 = .

then there is € R, which depends implicitly upon
the contrast x through the dispersion relation

fo(n, k) = {mr_ E+Z]2?3

such that the strongly-oscillating black-hole field

upn(r,0) = r"®(0) (0 € (=7, 7))

is a solution to (1) in a neighborhood of x.. Note
that upy, € L2(2) but up, ¢ H' (). The require-
ment that up, be outgoing leads to (using energy
considerations or a limiting absorption principle)

n<0ifk €I’ n>0ifk € I (4)

The purpose of this work is to investigate the ex-
istence of complex resonances occurring at the cor-
ners of 0f2,,,, which can be built analogously to that
of usual scattering resonances. We propose here the
following, somewhat imprecise, definition:

Definition 1. A corner resonance is solution to (1)
that is outgoing at a corner &, € 0§2,.

A corner resonance is localized at a corner x.
of 9L, in the sense that it blows up as

u(r,0) ~ rd()

r—0t

O € (=m7n]), )

where « solves (3) with () > 0. The multival-
ued nature of k — {n| f4(n, k) = 0} suggests that
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such resonances can exist. This seems to be cor-
roborated by the strategy proposed in [5], which
consists in perturbing a smooth 02, with corners
so that eigenvalues k,, are perturbed into embedded
eigenvalues or resonances.

2 Complex scaling for corners resonances

The principle of complex scaling is to define a mod-
ified transmission problem such that if (u, ) is a
corner resonance, then x is an eigenvalue of the
modified problem. The construction exploits the an-
alyticity of (5) with respect to 7.

To formalize this, let (r, #) be cylindrical coor-
dinates originating at a corner . € 9€,,,. The com-
plex scaling technique introduced in [1] consists in
analytically continuing u from (0, R) x (—m, 7| to
{r'/>|r € (0,R)} x (—m,7], where a € C is the
complex scaling parameter to be chosen. By defin-
ing uq(r,0) == u(r'/*,#), the modified problem is

e (ard,)? ua(r,0) + dp (¢ '0puy) (r,0) = 0

(6)
on (0, R) x (—m, 7|, which can be discretized with
a finite element method. A suitable choice of o # 1
enables to turn resonant contrasts ~ that belong to a
given region K, C C into eigenvalues of (6). The
associated eigenfunction u, € L?(f2) behaves at
each corner as (compare with (5))

ua(r,0) ~ riad(f)

r—0t

(0 € (=m,7]),

where o € C is chosen such that I (7/a) < 0.
The numerical difficulty stems from the fact that
(6) is nonlinear in s, since arg (a) must depend

upon £, echoing [6] where parameters with frequency-

dependent modulus are considered. This is apparent
from the outgoing condition (4), which implies

arg(a) < 0if k € I, arg(a) > 0if k € IS0,

Specifically, a study of the dispersion relation (3)
shows that oz must satisfy the stability constraint

Omin (k) < arg(a(k)) < Omax(k) (kK €R), (7)
which ensures that only outgoing corner waves must
be exponentially decaying (equivalently, the corner
must not bring energy into the domain).

Figure 2 illustrates (7). The values of Oy, for

K < =27 and O min for K > #—a7 are consequences
of (4). Any k-independent scaling parameter such
as oy = e~ "/* fails (7); ao(k) = €%) where 0(x)
is a polynomial satisfying (7) for k € [—6, 0].
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Figure 2: Condition (7) for a corner angle ¢ = 7/3.
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Figure 3: Essential spectrum o for ¢ = 7/3.

Figure 3 plots the deformation of the essential
spectrum

Oess ={k |IN € C*: fy(n,k) =0, I(1/a) =0}

for o = 1 (i.e. no complex scaling, in which case
we recover I.), for the x-independent scaling a;
(discussed in [2, §4.7.1]), and for the x-dependent
scaling aa. The region K, where resonant contrasts
can be computed is the region uncovered by the de-
formation of the essential spectrum.

Ongoing work focuses on the construction of a
scaling function k — (k) that maximizes |K,|
while still leading to a tractable nonlinear eigen-
value problem in .
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