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Computation of plasmon resonances localized at corners using frequency-dependent complex scaling
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Abstract

A plasmonic device with a non-smooth boundary
can exhibit strongly-oscillating surface waves whose
phase velocities vanish as they reach the corners.
This work investigates in the quasi-static limit the
existence of corner resonances, which are analogous
to scattering resonances in the sense that the local
behavior at each corner plays the role of the be-
havior at infinity. Resonant contrasts are sought as
eigenvalues of the transmission problem with com-
plex scaling applied at corners. Since the scaling
function must depend upon the contrast, the corre-
sponding eigenvalue problem is nonlinear.
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1 Definition of corner resonances

This work focuses on the transmission problem{
div
(
ε(x)−1∇u(x)

)
= 0

(
x ∈ Ω ⊂ R2

)
u(x) = 0 (x ∈ ∂Ω) ,

(1)

where the differentiations are weak, Ω is a bounded
C∞ domain, and ε is piecewise constant

ε(x) = εm1Ωm(x) + εd1Ω\Ωm(x), (2)

where Ωm is a piecewise-smooth domain model-
ing the plasmonic device, see Figure 1. Typically,
εm depends upon the frequency ω through a physi-
cal model; this dependency need not be introduced
herein since ω does not appear explicitly in the quasi-
static approximation (1). If the contrast

κ :=
εm
εd

is not real, then the only solution of (1) in H1(Ω) is
u = 0. Let us review some results for κ ∈ R.

If ∂Ωm is smooth there is a sequence of real
eigenvalues (κn)n, for which (1) has a non-null so-
lution, accumulating at −1 [3, Thm. 1]. These con-
trasts are associated with surface waves known as
surface plasmons, whose energy-concentrating prop-
erties are employed in many applications.

Ωm φ
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Figure 1: Transmission problem on Ω. The plas-
monic inclusion Ωm has a corner of angle φ.

Let ∂Ωm have one corner xc of angle φ ∈ (0, π).
If κ lies in the critical interval [1, Tab. 1] [4]

Ic :=

[
φ− 2π

φ
,−1

]
∪
[
−1,

φ

φ− 2π

]
= Iodd

c ∪Ieven
c ,

then there is η ∈ R, which depends implicitly upon
the contrast κ through the dispersion relation

fφ(η, κ) :=

[
sinh (ηπ)

sinh [η (π − φ)]

]2

−
[

1− κ
1 + κ

]2

= 0,

(3)
such that the strongly-oscillating black-hole field

ubh(r, θ) = riηΦ(θ) (θ ∈ (−π, π])

is a solution to (1) in a neighborhood of xc. Note
that ubh ∈ L2(Ω) but ubh /∈ H1(Ω). The require-
ment that ubh be outgoing leads to (using energy
considerations or a limiting absorption principle)

η < 0 if κ ∈ Iodd
c , η > 0 if κ ∈ Ieven

c . (4)

The purpose of this work is to investigate the ex-
istence of complex resonances occurring at the cor-
ners of ∂Ωm, which can be built analogously to that
of usual scattering resonances. We propose here the
following, somewhat imprecise, definition:

Definition 1. A corner resonance is solution to (1)
that is outgoing at a corner xc ∈ ∂Ωm.

A corner resonance is localized at a corner xc
of ∂Ωm in the sense that it blows up as

u(r, θ) ∼
r→0+

riηΦ(θ) (θ ∈ (−π, π]) , (5)

where κ solves (3) with =(η) ≥ 0. The multival-
ued nature of κ 7→ {η | fφ(η, κ) = 0} suggests that
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such resonances can exist. This seems to be cor-
roborated by the strategy proposed in [5], which
consists in perturbing a smooth ∂Ωm with corners
so that eigenvalues κn are perturbed into embedded
eigenvalues or resonances.

2 Complex scaling for corners resonances

The principle of complex scaling is to define a mod-
ified transmission problem such that if (u, κ) is a
corner resonance, then κ is an eigenvalue of the
modified problem. The construction exploits the an-
alyticity of (5) with respect to r.

To formalize this, let (r, θ) be cylindrical coor-
dinates originating at a corner xc ∈ ∂Ωm. The com-
plex scaling technique introduced in [1] consists in
analytically continuing u from (0, R) × (−π, π] to
{r1/α | r ∈ (0, R)} × (−π, π], where α ∈ C is the
complex scaling parameter to be chosen. By defin-
ing uα(r, θ) := u(r1/α, θ), the modified problem is

ε−1 (αr∂r)
2 uα(r, θ) + ∂θ

(
ε−1∂θuα

)
(r, θ) = 0

(6)
on (0, R) × (−π, π], which can be discretized with
a finite element method. A suitable choice of α 66= 1
enables to turn resonant contrasts κ that belong to a
given region Kα ⊂ C into eigenvalues of (6). The
associated eigenfunction uα ∈ L2(Ω) behaves at
each corner as (compare with (5))

uα(r, θ) ∼
r→0+

ri
η
αΦ(θ) (θ ∈ (−π, π]) ,

where α ∈ C is chosen such that =(η/α) < 0.
The numerical difficulty stems from the fact that

(6) is nonlinear in κ, since arg (α) must depend
upon κ, echoing [6] where parameters with frequency-
dependent modulus are considered. This is apparent
from the outgoing condition (4), which implies

arg(α) < 0 if κ ∈ Iodd
c , arg(α) > 0 if κ ∈ Ieven

c .

Specifically, a study of the dispersion relation (3)
shows that α must satisfy the stability constraint

θmin(κ) < arg(α(κ)) < θmax(κ) (κ ∈ R), (7)

which ensures that only outgoing corner waves must
be exponentially decaying (equivalently, the corner
must not bring energy into the domain).

Figure 2 illustrates (7). The values of θmax for
κ < φ−2π

φ and θmin for κ > φ
φ−2π are consequences

of (4). Any κ-independent scaling parameter such
as α1 ≡ e−iπ/4 fails (7); α2(κ) = eiθ(κ) where θ(κ)
is a polynomial satisfying (7) for κ ∈ [−6, 0].
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Figure 2: Condition (7) for a corner angle φ = π/3.
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Figure 3: Essential spectrum σess for φ = π/3.

Figure 3 plots the deformation of the essential
spectrum

σess = {κ | ∃η ∈ C∗ : fφ (η, κ) = 0, = (η/α) = 0}

for α ≡ 1 (i.e. no complex scaling, in which case
we recover Ic), for the κ-independent scaling α1

(discussed in [2, § 4.7.1]), and for the κ-dependent
scaling α2. The regionKα where resonant contrasts
can be computed is the region uncovered by the de-
formation of the essential spectrum.

Ongoing work focuses on the construction of a
scaling function κ 7→ α(κ) that maximizes |Kα|
while still leading to a tractable nonlinear eigen-
value problem in κ.
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